目录 1. 技术细节 1.1 失真识别 1.2 得到对应的PRI并评估质量 块效应 模糊和噪声 1.3 扩展为通用的质量评价指标--BPRI 归一化3种质量评分 判断失真类型 加权求和 2. 总结 这一篇应该是继<BLIND QUALITY ASSESSMENT OF COMPRESSED IMAGES VIA PSEUDO STRUCTURAL SIMILARITY>(2016 ICME)之后的拓展工作.后者是将压缩图像再压缩,比较二者伪结构(压缩块角)的相似度:而本文就是将方法一般化,产生…
目录 1. 技术细节 1.1 得到MDI 1.2 判别伪结构,计算伪结构相似性 2. 实验 动机:作者认为,基于块的压缩会产生一种伪结构(pseudo structures),并且不同程度压缩产生的伪结构具有一定的相似性.那么,我们就可以通过检测伪结构相似性,来评估压缩图像质量. 检测方法:将压缩图像进行最大程度压缩,得到most distorted image(MDI):然后再计算压缩前后的相似性,即pseudo structural similarity(PSS).如果压缩图像本身质量很差,…
目录 故事背景 本文方法(DBIQ) 发表在2016年Neurocomputing. 摘要 JPEG is the most commonly used image compression standard. In practice, JPEG images are easily subject to blocking artifacts at low bit rates. To reduce the blocking artifacts, many deblocking algorithms…
Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009. Methodologies for data quality assessment and improvement. ACM Comput. Surv. 41, 3, Article 16 (July 2009), 52 pages. (gs:173) 这篇论文是关于数据质量方法的综述,全文共52页(其中正文34页,附录18页),对现有的"d…
In one embodiment, a computing device (e.g., border router or network management server) transmits a discovery message into a computer network, such as in response to a given trigger. In response to the discovery message, the device receives a unicas…
目录 1. 故事 2. 失真变化 3. 方法(PSNR-B) 4. 实验 这篇文章提出了一个PSNR-B指标,旨在衡量 压缩图像的块效应强度 或 去块效应后的残留块效应强度(比较去块效应算法的优劣). 1. 故事 现有的PSNR虽然形式简单.物理意义清晰,但与主观质量关系不大:SSIM(同时考虑亮度相似度.对比度相似度和结构相似度)和主观质量更贴近,但无法反映块效应强度. 2. 失真变化 首先,我们设无损图像为\(x\),编解码后为压缩图像\(y\),去压缩失真后的图像为\(\tilde{y}\…
本篇博文主要对DMQ(S3.7)的分类进行了研读. 1. 这个章节提出了一种DQM的分类法(如下图) 由上图可见,该分类法的分类标准是对assessment & improvement阶段的支持,以及是否解决technique(quality dimensions) & economic方面的问题. 2. 从历史发展的角度来看,数据质量维度的关注点与ICT(Information & Communication Technology)的发展是相关的. (1) 五六十年代时,mono…
http://www.molecularevolution.org/resources/activities/QC_of_NGS_data_activity_new table of contents expected learning outcomes getting started exercise 1: checking Illumina data with the FASTX-Toolkit exercise 2: checking 454 data with the FASTX-Too…
目录 摘要 读后感 故事 深度双域法(D3) 发表于2016年CVPR. 摘要 既利用了CNN,又考虑了JPEG压缩的特性,解决JPEG图像去失真问题. 针对于压缩特性,作者考虑了JPEG压缩方案的先验知识,也看到了基于稀疏的双域方法的成功实践[24]. 基于此,作者设计了一个单步稀疏推断(One-Step Sparse Inference, 1-SI)模块,作为稀疏编码的前向近似,高效.轻量. 读后感 这篇文章的主要贡献在于:将[24]中的双域法(主要基于稀疏字典学习),推广到了深度学习方法上…
UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html   这些代码很实用,可以让我们站在巨人的肩膀上~~   Topic Resources References Feature Extraction SIFT [1] [Demo program][SIFT Library] [VLFeat] PCA-SIFT [2] [Projec…
转自:http://blog.sina.com.cn/s/blog_631a4cc40100wrvz.html   UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html   这些代码很实用,可以让我们站在巨人的肩膀上~~   Topic Resources References Feature Extraction SIFT [1]…
UIUC同学Jia-Bin Huang收集的计算机视觉代码合集 http://blog.sina.com.cn/s/blog_4a1853330100zwgm.htmlv UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html   这些代码很实用,可以让我们站在巨人的肩膀上~~   Topic Resources References…
Computer Vision Resources Softwares Topic Resources References Feature Extraction SIFT [1] [Demo program][SIFT Library] [VLFeat] PCA-SIFT [2] [Project] Affine-SIFT [3] [Project] SURF [4] [OpenSURF] [Matlab Wrapper] Affine Covariant Features [5] [Oxfo…
1. SonarQube安装(sonarqube5.1.2 + sonar-runner-dist-2.4) 1.1 前提条件 1) 已安装Java环境(version:1.7+) 2) 已安装MySQL数据库(version:5.x) 下载SonarQube: http://www.sonarqube.org/downloads/ 下载Sonar-Runner: http://repo1.maven.org/maven2/org/codehaus/sonar/runner/sonar-runn…
Sonar并不是简单地把不同的代码检查工具结果(例如 FindBugs,PMD 等)直接显示在 Web 页面上,而是通过不同的插件对这些结果进行再加工处理,通过量化的方式度量代码质量的变化,从而可以方便地对不同规模和种类的工程进行代码质量管理. sonarqubue默认的对java的检测规则不一定适合我们,可以自己去自定义rules. 禁用rules Rules-Quality Profile- Sonar way Java 查看激活的规则,可以禁用,或者更改严重级别(Severity) 自定义…
王保全. 基于混合专家模型的快速图像超分辨率方法研究与实现[D]. 2015. PSNR 和SSIM 在有时候并不能很确切的表示图像质量 标准,该论文中根据一定量的人为的感知评分作为参考,用斯皮尔曼等级相关 系数来验证各个图像质量评价指标的有效性,目标是找到更符合人眼观察的图 像质量评价标准.除了 PSNR 和 SSIM ,该论文还对比了其他几个图像质量评价标准: 信息保真度(Information Fidelity Criterion ,IFC)[43] . 多尺度结构相似度 (Multi-s…
第一次发布代码,就好比借了一笔钱.只要通过不断重写来偿还债务,小额负债可以加速开发.但久未偿还债务会引发危险.复用马马虎虎的代码,类似于负债的利息.整个部门有可能因为松散的实现,不完全的面向对象的设计或其他诸如此类的负债而陷入窘境. ---维基百科 简介 技术负债(英语:Technical debt),又译技术债,也称为设计负债(design debt).代码负债(code debt),是编程及软件工程中的一个比喻.指开发人员为了加速软件开发,在应该采用最佳方案时进行了妥协,改用了短期内能加速软…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
IPTV的服务质量(QoE)要求 Quality of experience requirements for IPTV services Summary This Recommendation defines user requirements for Quality ofExperience for IPTV services. The QoE requirements are defined from an end userperspective and are agnostic to n…
这篇blog,原来是西弗吉利亚大学的Li xin整理的,CV代码相当的全,不知道要经过多长时间的积累才会有这么丰富的资源,在此谢谢LI Xin .我现在分享给大家,希望可以共同进步!还有,我需要说一下,不管你的理论有多么漂亮,不管你有多聪明,如果没有实验来证明,那么都是错误的.  OK~本博文未经允许,禁止转载哦!  By  wei shen Reproducible Research in Computational Science “It doesn't matter how beautif…
This Chapter outlines the logical steps to writing a good research paper. To achieve supreme excellence or perfection in anything you do, you need more than just the knowledge. Like the Olympic athlete aiming for the gold medal, you must have a posit…
目录 1. ABSTRACT 2. INTRODUCTION 3. RELATED WORKS 3.1. Quality Enhancement 3.2. Multi-frame Super-resolution 3. 压缩视频的质量波动 4. MF-CNN 4.1. Framework 4.2. SVM-based PQF detector 4.3. MC-subnet Architecture Training strategy 4.4. QE-subnet Architecture Tra…
论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器接收到的混合信号中的声学回声.传统的方法是使用自适应有限脉冲响应(FIR)滤波器来识别房间脉冲响应(RIR),因为房间脉冲响应对各种野外场景都不具有鲁棒性.在本文中,我们提出了一种基于深度神经网络的回归方法,从近端和远端混合信号中提取的特征直接估计近端目标信号的幅值谱.利用深度学习强大的建模和泛化能…
论文地址:https://arxiv.53yu.com/abs/2106.07577 基于 F-T-LSTM 复杂网络的联合声学回声消除和语音增强 摘要 随着对音频通信和在线会议的需求日益增加,在包括噪声.混响和非线性失真在内的复杂声学场景下,确保声学回声消除(AEC)的鲁棒性已成为首要问题.尽管已经有一些传统的方法考虑了非线性失真,但它们对于回声抑制仍然效率低下,并且在存在噪声时性能会有所衰减.在本文中,我们提出了一种使用复杂神经网络的实时 AEC 方法,以更好地建模重要的相位信息和频率时间…
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测信号和残差信号应用独立的CNN网络.采用标量量化和哈夫曼编码将量化后的特征映射编码为二进制流.本文采用固定的32×32块来证明我们的想法,并与已知的H.264/AVC视频编码标准进行了性能比较,具有可比较的率失真性能.这里使用结构相似性(SSIM)来测量失真,因为它更接近感知响应. I. INTRO…
论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3364/attachments/777/815/Thu-1-10-4.pdf 一种基于深度学习的鲁棒级联回声消除算法 摘要 AEC是用来消除扬声器和麦克风之间的反馈.理想情况下,AEC是一个线性问题,可以通过自适应滤波来解决.然而,在实际应用中,有两个重要的问题严重影响AEC的性能,即1)双讲问题和2)主要由扬声器和/或功率放大器引起的非线性失真.针对这两个问题,…
论文翻译:https://arxiv.53yu.com/abs/2009.13931 基于高效多任务卷积神经网络的残余回声抑制 摘要 在语音通信系统中,回声会降低用户体验,需要对其进行彻底抑制.提出了一种利用卷积神经网络实现实时残余回声抑制(RAES)的方法.在多任务学习的背景下,采用双语音检测器作为辅助任务来提高性能.该训练准则基于一种新的损失函数,我们称之为抑制损失,以平衡残余回声的抑制和近端信号的失真.实验结果表明,该方法能有效抑制不同情况下的残余回声. 关键字:残余回声抑制,卷积神经网络…
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting noncoding variants- 非常好的学习资料 这篇文章的第一个亮点就是直接从序列开始分析,第二就是使用深度学习获得了很好的预测效果. This is, to our knowledge, the first approach for prioritization of functional…
论文地址:https://ieeexplore.ieee.org/abstract/document/9306224 基于RNN的回声消除 摘要 本文提出了一种基于深度学习的语音分离技术的回声消除方法.传统上,AEC使用线性自适应滤波器来识别麦克风和扬声器之间的声脉冲响应.然而,当传统方法遇到非线性条件时,处理的结果并不理想.我们的实践利用了深度学习技术的优势,这有利于非线性处理.在所采用的RNN系统中,与传统的语音分离方法不同,我们增加了单讲特征,并为每个元素分配特定的权重.实验结果表明,该方…