[NOIp2014] luogu P1351 联合权值】的更多相关文章

哎我博 4 了. 题目描述 无向连通图 GGG 有 nnn 个点,n−1n−1n−1 条边.点从 111 到 nnn 依次编号,编号为 iii 的点的权值为 WiW_iWi​,每条边的长度均为 111.图上两点 (u,v)(u,v)(u,v) 的距离定义为 uuu 点到 vvv 点的最短距离.对于图 GGG 上的点对 (u,v)(u, v)(u,v),若它们的距离为 222,则它们之间会产生 Wv×WuW_v \times W_uWv​×Wu​ 的联合权值. 请问图 GGG 上所有可产生联合权值…
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离.对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu×Wv 的联合权值. 请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 输入输出格式 输入格式: 输入文件名为link .in. 第一行包含1 个整数n . 接下来n - 1 行,每…
这是一个不错的树形结构的题,由于本蒟蒻不会推什么神奇的公式其实是懒得推...,所以很愉快的发现其实只需要两个点之间的关系为祖父和儿子.或者是兄弟即可. 然后问题就变得很简单了,只需要做一个正常的DFS,遍历整棵树,同时判断有没有祖父,如果有就计算,然后遍历自己的儿子,每次判断最大的一个,然后用一个\(sum\)来维护这个点之前的所有兄弟的权值和,挨个计算即可. 具体操作见代码,如果有不懂的,代码里面具体解释. #include<bits/stdc++.h> #define clean(a,i)…
题目链接:https://www.luogu.org/problemnew/show/P1351 做了些提高组的题,不得不说虽然NOIP考察的知识点虽然基本上都学过,但是做起题来还是需要动脑子的. 题目质量很高吧,觉得出的很有水平 (除了2017 d1t1 70分: 三层枚举强制到距离为2 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using n…
P1351 联合权值 想刷道水题还交了3次.....丢人 (1.没想到有两个点都是儿子的状况 2.到处乱%(大雾)) 先dfs一遍处理出父亲$fa[x]$ 蓝后再一遍dfs,搞搞就出来了. #include<iostream> #include<cstdio> #include<cstring> #define re register using namespace std; ; int max(int &a,int &b){return a>b?…
P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\)​,每条边的长度均为 \(1\).图上两点 \((u, v)\) 的距离定义为 \(u\) 点到 \(v\) 点的最短距离.对于图 \(G\) 上的点对 \((u, v)\),若它们的距离为 \(2\),则它们之间会产生\(W_v \times W_u\)​ 的联合权值. 请问图 \(G\) 上所有可产生联…
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离.对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu ×Wv 的联合权值. 请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 输入输出格式 输入格式: 输入文件名为link .in. 第一行包含1 个整数n . 接下来n - 1 行,…
https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离.对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu×Wv 的联合权值. 请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 输入输出格式 输入格式…
题目:洛谷P1351.Vijos P1906.codevs3728.UOJ#16. 题目大意:有一个无向连通图,有n个点n-1条边,每个点有一个权值$W_i$,每条边长度为1.规定两个距离为2的点i和j可以产生$W_i×W_j$的联合权值.求最大的联合权值是多少,联合权值之和是多少. 解题思路:首先,距离为2的点只有两种情况:①点u和它父亲的父亲:②点u和它的兄弟.那么我们只需遍历全图,记录该点父亲的父亲即可.对于每个节点,求出它所有儿子和儿子之间的联合权值是多少,加起来即可. 这样子可能会超时…
更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从\(1\)到\(n\)依次编号,编号为\(i\)的点的权值为\(W_i\) ,每条边的长度均为\(1\).图上两点\((u, v)\)的距离定义为\(u\)点到\(v\)点的最短距离.对于图\(\mathrm G\)上的点对\((u, v)\),若它们的距离为\(2\),则它们之间会产生\(W_u…