pytorch固定部分参数】的更多相关文章

pytorch固定部分参数 不用梯度 如果是Variable,则可以初始化时指定 j = Variable(torch.randn(5,5), requires_grad=True) 但是如果是m = nn.Linear(10,10)是没有requires_grad传入的 for i in m.parameters(): i.requires_grad=False 另外一个小技巧就是在nn.Module里,可以在中间插入这个 for p in self.parameters(): p.requi…
1. 均匀分布 torch.nn.init.uniform_(tensor, a=0, b=1) 从均匀分布U(a, b)中采样,初始化张量. 参数: tensor - 需要填充的张量 a - 均匀分布的下界 b - 均匀分布的上界 代码示例: >>> w = torch.Tensor(3, 5) >>> torch.nn.init.uniform_(w) tensor([[0.1755, 0.4399, 0.8769, 0.8465, 0.2909], [0.9962…
In situation of finetuning, parameters in backbone network need to be frozen. To achieve this target, there are two steps. First, locate the layers and change their requires_grad attributes to be False. for param in net.backbone.parameters(): param.r…
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch版本:1.6.0 tensorflow版本:1.15.0 之前我们就已经了解了pytorch和tensorflow中的变量,本节我们深入了解可训练的参数-变量 接下来我们将使用sklearn自带的iris数据集来慢慢品味. 1.pytorch (1)第一种方式,不使用nn.Module或nn.Sequntial()来建立模型的情况下自定义参数: 加载数据集并转换为te…
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本:1.6.0 tensorflow版本:1.15.0 关于参数初始化,主要的就是一些数学中的分布,比如正态分布.均匀分布等等. 1.pytorch (1)自定义可训练参数 torch.bernoulli(input, out=None) → Tensor 从伯努利分布中抽取二进制随机数 (0 或 1…
参考:https://blog.csdn.net/qq_41368247/article/details/86626446 使用前提:stride > 1 补充:same卷积操作 是通过padding使得卷积之后输出的特征图大小保持不变(相对于输入特征图),不代表得到的输出特征图的大小与输入特征图的大小完全相同,而是他们之间的比例保持为 输入特征图大小/输出特征图大小 = stride 举例: 比如输入特征图为6*6,stride=2, kernel_size = 3, 所以进行same卷机操作…
在colab和kaggle内核的Jupyter notebook中如何可视化深度学习模型的参数对于我们分析模型具有很大的意义,相比tensorflow, pytorch缺乏一些的可视化生态包,但是幸好pytorch1.1官方添加了tensorboard的库,可以直接从TORCH.UTILS.TENSORBOARD 调用. 但是就目前的使用体验和反应,还是建议直接使用tensorboardX包在pytorch中进行可视化. 相比本地机中使用notebook进行可视化,在这种远程的notebook中…
[源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 目录 [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 0x00 摘要 0x01 前言 1.1 先决条件 1.2 基础知识 1.3 代码 0x02 启动 2.1 总体启动 2.2 启动参数服务器 0x03 参数服务器 0x04 Trainer 0x05 对比 0xFF 参考 0x00 摘要 在前面的文章之中,我们已经学习了PyTorch 分布式的基本模块,接下来我们通过几篇文…
[源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 目录 [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 0x00 摘要 0x00 综述 0x01 启动 0x03 支撑系统 3.1 功能 3.2 使用 3.2.1 混合模型 3.2.2 使用 3.3 定义 3.4 主要函数 0x04 HybridModel 0x05 训练 5.1 初始化 5.2 训练循环 0x06 比对 0xFF 参考 0x00 摘要 在前面的文章之中,…
1. 模型下载 import re import os import glob import torch from torch.hub import download_url_to_file from torch.hub import urlparse import torchvision.models as models def download_model(url, dst_path): parts = urlparse(url) filename = os.path.basename(pa…
===================================== 函数的柯里化与反柯里化 ===================================== [这是一篇比较久之前的总结了,若有错漏,请指正!] 柯里化 currying 维基百科的名词解释:柯里化(英语:Currying),又译为卡瑞化或加里化,是把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数而且返回结果的新函数的技术.这个技术由 Christopher Stra…
函数柯里化,是固定部分参数,返回一个接受剩余参数的函数,也称为部分计算函数,目的是为了缩小适用范围,创建一个针对性更强的函数. 那么反柯里化函数,从字面讲,意义和用法跟函数柯里化相比正好相反,扩大适用范围,创建一个应用范围更广的函数.使本来只有特定对象才适用的方法,扩展到更多的对象. 看一下通用函数: Function.prototype.currying = function() { var that = this; return function() { return Function.pr…
什么是函数柯里化? 百度百科: 在计算机科学中,柯里化(Currying)是把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数且返回结果的新函数的技术.通俗点说就是将一个函数拆分成多个函数,是固定部分参数,返回一个接受剩余参数的函数,也称为部分计算函数,目的是为了缩小适用范围,创建一个针对性更强的函数. 案例1: /* * 经典面试题 * 函数参数不定回调函数数目不定 * 编写函数实现: * add(1,2,3,4,5)==15 * add(1,2)…
unCurry函数与curry函数区别:curry化函数:固定部分参数,返回一个接受剩余参数的新函数,目的是为了缩小适用范围,创建一个针对性更强的函数. unCurry化函数:扩大适用范围,创建一个应用范围更广的函数.使本来只有特定对象才适用的方法,扩展到更多的对象. unCurry函数 参考:https://www.cnblogs.com/pigtail/p/3450852.html https://juejin.im/post/5b561426518825195f499772#heading…
Python基础知识总结笔记(四)函数python中的函数函数中的参数变量作用域偏函数PFA递归函数高阶函数BIFs中的高阶函数匿名函数lambda闭包Closure装饰器Decorator函数式编程Functional Programming 每天都有程序员定时讲解Python技术,分享一些学习的方法和需要留意的小细节,要资料加 6244407451. python中的函数■ 函数的意义:■1.对输入进行变换映射后输出 ,可以进行反复调用.以函数名对代码块进行封装■2.过程化 VS 结构化■…
Overview TurboTransformers是腾讯最近开源的BERT推理模型,它的特点就是一个字,快.本人用BERT(huggingface/transformers)在V100上做了测试,测试结果和官宣的基本一致:TurboTransformers的推理速度要比Pytorch快上1~4倍. 它之所以快,是因为它是专用于BERT的轻量级推理模型. 分层 不管是计算机的硬件.软件,还是现在的深度学习,它们都遵循着一个很重要的设计思想--分层: 用简单的代码(或电路)来实现一个基本功能组件.…
AI算子列表 概述 目前只有部分算子可在一个库中同时运行在MLU220和MLU270平台.也就是用户使用 ./build_cnplugin.sh --mlu270 命令编译生成的 libcnplugin.so 文件可同时在MLU220和MLU270上运行,其余算子只能在MLU270上运行.支持MLU220和MLU270平台的算子列表如下: Faster Rcnn Detection Output Roi Pool Proposal Yolov3 Detection Output Yolov2 D…
摘要:一个神经网络有N个样本,经过这个网络把N个样本分为M类,那么此时backward参数的维度应该是[N X M] 正常来说backward()函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿. 首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的. 运行结果: 不难看出,我们构建了这样的一…
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效.如同使用PyTorch中的自动梯度方法一样,在搭建复杂的神经网络模型的时候,我们也可以使用PyTorch中已定义的类和方法,这些类和方法覆盖了神经网络中的线性变换.激活函数.卷积层.全连接层.池化层等常用神经网络结构的实现.在完成模型的搭建之后,我们还可以使用PyTorch提供的类型丰富的优化函数来…
原文地址: https://blog.csdn.net/u011668104/article/details/81670544 ---------------------------------------------------------------------------------------------------------------- 答案:不怕不怕,pytorch自己默认有初始化 证据如下: torch.nn.Conv2d的参数初始化    https://pytorch.or…
from:http://blog.csdn.net/VictoriaW/article/details/72872036 之前我学习了神经网络中权值初始化的方法 那么如何在pytorch里实现呢. PyTorch提供了多种参数初始化函数: torch.nn.init.constant(tensor, val) torch.nn.init.normal(tensor, mean=0, std=1) torch.nn.init.xavier_uniform(tensor, gain=1) 等等.详细…
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本文目录 1. xavier初始化 2. kaiming初始化 3. 实际使用中看到的初始化 3.1 ResNeXt,densenet中初始化 3.2 wide-residual-networks中初始化(MSRinit) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8297793.html…
一.使用Numpy初始化:[直接对Tensor操作] 对Sequential模型的参数进行修改: import numpy as np import torch from torch import nn # 定义一个 Sequential 模型 net1 = nn.Sequential( nn.Linear(30, 40), nn.ReLU(), nn.Linear(40, 50), nn.ReLU(), nn.Linear(50, 10) ) # 访问第一层的参数 w1 = net1[0].w…
导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源库都涉及到标量对向量求导.比如下面这个pytorch的例子. import torch x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True) y = x ** 2 + 2 z = torch.sum(y) z.backward() print(x…
pytorch 中的 state_dict 是一个简单的python的字典对象,将每一层与它的对应参数建立映射关系.(如model的每一层的weights及偏置等等) (注意,只有那些参数可以训练的layer才会被保存到模型的state_dict中,如卷积层,线性层等等) 优化器对象Optimizer也有一个state_dict,它包含了优化器的状态以及被使用的超参数(如lr, momentum,weight_decay等) 备注: 1) state_dict是在定义了model或optimiz…
内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterable或者是定义了参数组的...~ 参数: params (iterable) – 待优化参数的iterable或者是定义了参数组的...~ torch.optim torch.optim是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法.…
上次通过pytorch实现了RNN模型,简易的完成了使用RNN完成mnist的手写数字识别,但是里面的参数有点不了解,所以对问题进行总结归纳来解决. 总述:第一次看到这个函数时,脑袋有点懵,总结了下总共有五个问题: 1.这个input_size是啥?要输入啥?feature num又是啥? 2.这个hidden_size是啥?要输入啥?feature num又是啥? 3.不是说RNN会有很多个节点连在一起的吗?这怎么定义连接的节点数呢? 4.num_layer中说的stack是怎么stack的?…
最近使用Pytorch在学习一个深度学习项目,在模型保存和加载过程中遇到了问题,最终通过在网卡查找资料得已解决,故以此记之,以备忘却. 首先,是在使用多GPU进行模型训练的过程中,在保存模型参数时,应该使用类似如下代码进行保存: torch.save({                 'epoch': epoch,                 'state_dict': model.module.state_dict(),                 'optimizer': opti…
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存.加载的上述三类环境不同,加载时会出错.就去研究了一下,做了实验,得出以下结论: 多/单GPU训练保存模型参数.CPU加载使用模型 #保存 PATH = 'cifar_net.pth' torch.save(net.module.state_dict(), PATH) #加载 net = Net()…
背景:基于PyTorch的模型,想固定主分支参数,只训练子分支,结果发现在不同epoch相同的测试数据经过主分支输出的结果不同. 原因:未固定主分支BN层中的running_mean和running_var. 解决方法:将需要固定的BN层状态设置为eval. 问题示例: 环境:torch:1.7.0 # -*- coding:utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F class Net…