Lecture 03 : GFS 一.一致性 1, 弱一致性 可能会读到旧数据 2, 强一致性 读到的数据都是最新的 3, 一致性比较 强一致性对于app的写方便, 但是性能差 弱一致性有良好的性能, 并且容易延伸服务器, 但是出问题难定位 二.系统设计 1, 为什么chunks那么大 为了均摊费用 减小master的保存chunk状态 大小 (chunk handle) 2, master知道文件架构 对于目录, 知道什么文件在里面 对于文件, 知道每个64MB 的chunk 服务器 保存状态…
引言: 这个系列的笔记是台大李宏毅老师机器学习的课程笔记 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 很久都没有用高数及线性代数的知识,很多都生疏了,这节课有很多的数学公式及概念,建议先看一下简书上的这篇介绍梯度及梯度下降法的文章深入浅出--梯度下降法及其实现,真的是深入浅出,好评如潮. 这里需要知道的是: 什么是梯度? 为什么要用梯度下降法? 一.什么是梯度 梯度是微积分中一个很重要…
Lecture 02 Infrastructure: RPC & threads 一.多线程挑战 共享数据: 使用互斥信号量.或者避免共享 线程间协作: 使用channels 或者 waitgroup 来等待所有map线程结束 并发粒度: 粗粒度: 简单,但是并发性不高 细粒度: 更多的并发,但是处理复杂,可能会有更多的冲突和死锁 以下这段代码就能说明并发的粒度问题: constructTaskArgs := func(phase jobPhase, task int) DoTaskArgs {…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 一.误差来自哪里?该如何处理这些误差…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 学习机器学习,先从demo侠做起吧,…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 1.回归问题的应用 回归问题因为主要…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 李老师这一集仅用1分19秒时间,通过…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 1.人工智能.机器学习.深度学习的关…
深度学习课程笔记(十二) Matrix Capsule with EM Routing  2018-02-02  21:21:09  Paper: https://openreview.net/pdf/99b7cb0c78706ad8e91c13a2242bb15b7de325ad.pdf  Blog: https://jhui.github.io/2017/11/14/Matrix-Capsules-with-EM-routing-Capsule-Network/  [Abstract] 一个…
深度学习课程笔记(二)Classification: Probility Generative Model  2017.10.05 相关材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 本节主要讲解分类问题: classification 问题最常见的形式,就是给定一个输入,我们去学习一个函数,使得该函数,可以输出一个东西(label).如下所示: 其实好多其他的问题,都是分类问题演化而来,都可以通过分类问题来解决,如:物体…