使用Multi-head Self-Attention进行自动特征学习的CTR模型 https://blog.csdn.net/u012151283/article/details/85310370 nlp中的Attention注意力机制+Transformer详解 https://zhuanlan.zhihu.com/p/53682800…
一.编码-解码架构 目的:解决语音识别.机器翻译.知识问答等输出输入序列长度不相等的任务. C是输入的一个表达(representation),包含了输入序列的有效信息. 它可能是一个向量,也可能是一个固定长度的向量序列: 如果C是一个向量序列,则它和输入序列的区别在于:序列C是定长的.较短的:而输入序列是不定长的.较长的. 二.注意力机制 1.attention 注意力权重用来估计其他元素与其相关的强度,并将由注意力加权的值的总和作为计算最终目标的特征. step1:计算其他元素与待测元素的相…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-detail/227 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为吴恩达老师<深度学习专业课程>学习与总结整理所得,对应的课程视频可以在这里查看. 引言 在ShowMeAI前一篇文章 自然语言处理与词嵌入 中我们对以下内容进行了介绍: 词嵌入与迁移学习/…
Seq2Seq(Attention) @ 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Seq2Seq(Attention)模型结构 1.2.2.1 Encoder 1.2.2.2 Decoder 1.2.2.2.1 原始解码器 1.2.2.2.2 带有注意力机制的解码器 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模型 2.2.1…
Seq2Seq(Attention) 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Seq2Seq(Attention)模型结构 1.2.2.1 Encoder 1.2.2.2 Decoder 1.2.2.2.1 原始解码器 1.2.2.2.2 带有注意力机制的解码器 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模型 2.2.1 En…
Bi-LSTM(Attention) @ 目录 Bi-LSTM(Attention) 1.理论 1.1 文本分类和预测(翻译) 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Bi-LSTM(Attention)模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 文本分类和预测(翻译) 文本分类的输入处理和预测(翻译)不同: 预测(翻译)通常用eye()把每个输入向量转换为one-hot向量, 但文本分类模型通常用Embedding初始化一个嵌入矩阵用来…
注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分…
注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提…
自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力机制进行过一些学习总结(可见http://www.cnblogs.com/robert-dlut/p/5952032.html).随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all yo…
自然语言处理中的Attention Model:是什么及为什么 2017-07-13 张俊林 待字闺中 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有时会简称AM模型)这个词.AM模型应该说是过去一年来NLP领域中的重要进展之一,在很多场景被证明有效.听起来AM很高大上,其实它的基本思想是相当直观简洁的.本文作者可以对灯发誓:在你读完这篇啰里啰嗦的文章及其后续文章后,一定可以透彻了解AM到底是什么,以及轻易看懂任何有关论文看上去复杂的数学公…