NLP之概率图模型】的更多相关文章

1.概率图模型 概率图模型是一类用图来表达变量相关关系的概率模型,它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的边表示变量间的概率相关关系.概率图模型可大致分为两类:第一类是使用有向无环图表示变量间的依赖关系,称为有向图模型或贝叶斯网,第二类是使用无向图表示变量间的相关关系,称为无向图模型或马尔科夫网. 2.马尔科夫系列 马尔科夫过程和马尔科夫链: 马尔科夫过程:随机过程中,有一类具有“无后效性性质”,即当随机过程在某一时刻to所处的状态已知的条件下,过程在时刻t>to…
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. so far till now, 我还没见到过将CRF讲的个明明白白的.一个都没.就不能不抄来抄去吗?我打算搞一个这样的版本,无门槛理解的.——20170927 陆陆续续把调研学习工作完成了,虽然历时有点久,现在put上来.评论里的同学也等不及了时不时催我,所以不敢怠慢啊…… 总…
概率图模型的作业越往后变得越来越有趣了.当然,难度也是指数级别的上涨啊,以至于我用了两个周末才完成秋名山神秘车牌的寻找,啊不,CRF模型的训练. 条件随机场是一种强大的PGM,其可以对各种特征进行建模,同时可以使用随机梯度下降算法进行训练,训练的结果就是PGM中那些定义变量交互方式的参数. 1.LR模型的训练 LR模型可以看作是CRF模型的低配版,在完全不定义随机变量交互,只考虑P(Y|X)的情况下,得到的就是LR模型.其数学表达如下: 这里theta是参数,X是特征也是像素值,该形式成为Log…
除了精确推理之外,我们还有非精确推理的手段来对概率图单个变量的分布进行求解.在很多情况下,概率图无法简化成团树,或者简化成团树后单个团中随机变量数目较多,会导致团树标定的效率低下.以图像分割为例,如果每个像素的label都是随机变量,则图中会有30W个随机变量(30W像素的小型相机).且这30W个随机变量相互之间耦合严重(4邻接,多回环),采用团树算法无法高效的获得单个像素label的可能值.所以,在精确推理之外,我们使用非精确推理的手段对节点的概率分布进行估计. 1.Loopy 置信传播 BP…
在前三周的作业中,我构造了概率图模型并调用第三方的求解器对器进行了求解,最终获得了每个随机变量的分布(有向图),最大后验分布(双向图).本周作业的主要内容就是自行编写概率图模型的求解器.实际上,从根本上来说求解器并不是必要的.其作用只是求取边缘分布或者MAP,在得到联合CPD后,寻找联合CPD的最大值即可获得MAP,对每个变量进行边缘分布求取即可获得边缘分布.但是,这种简单粗暴的方法效率极其低下,对于MAP求取而言,每次得到新的evidance时都要重新搜索CPD,对于单个变量分布而言,更是对每…
前两周的作业主要是关于Factor以及有向图的构造,但是概率图模型中还有一种更强大的武器——双向图(无向图.Markov Network).与有向图不同,双向图可以描述两个var之间相互作用以及联系.描述的方式依旧是factor.本周的作业非常有实际意义——基于马尔科夫模型的图像文字识别系统(OCR) 图像文字识别系统(OCR)在人工智能中有着非常重要的应用.但是受到图像噪声,手写体变形,连笔等影响基于图像的文字识别系统比较复杂.PGM的重要作用就是解决那些测量过程复杂,测量结果不一定对,连续测…
Week2的作业主要是关于概率图模型的构造,主要任务可以分为两个部分:1.构造CPD;2.构造Graph.对于有向图而言,在获得单个节点的CPD之后就可依据图对Combine CPD进行构造.在获得Combine CPD之后则可利用变量的观测来进行问答.此周作业的大背景是对基因型与表现型之间的关系进行探索.在已知表现性的情况下对基因型以及下一代的基因进行推测.这是一个很有实际意义的有向图网络. 1.CPD构造 1.1.基因型与表现型的关系——确定 在孟德尔遗传假说基础上,对双碱基配对的基因推测表…
Talk is cheap, I show you the code 第一章的作业主要是关于PGM的因子操作.实际上,因子是整个概率图的核心.对于有向图而言,因子对应的是CPD(条件分布):对无向图而言,因子对应的是势函数.总而言之,因子是一个映射,将随机变量空间映射到实数空间.因子表现的是对变量之间关系的一种设计.每个因子都编码了一定的信息. 因子的数据结构: phi = struct('var', [3 1 2], 'card', [2 2 2], 'val', ones(1, 8)); 在…
在概率图模型中,有一类很重要的模型称为条件随机场.这种模型广泛的应用于标签—样本(特征)对应问题.与MRF不同,CRF计算的是“条件概率”.故其表达式与MRF在分母上是不一样的. 如图所示,CRF只对 label 进行求和,而不对dataset求和. 1.CRF的likelyhood function 对于给定的数据集以及其对应标记,CRF的 E based on theta 是与 数据集 x[m]有关的,因为x[m]并没有完全被边际掉.也就是说,对数据集中的每个数据x[m],E based o…
之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上不然,后面详述. 上一讲谈到了概率分布的因式分解 \begin{array}{l}P\left({X,Y\left| Z \right.} \right) = P\left( {X\left| Z \right.} \right)P\left({Y\left| Z \right.} \right)\…
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建模和求解.然而,我们会发现,使用概率分布的图形表示进行分析很有好处.这种概率分布的图形表示被称为概率图模型( probabilistic graphical models ).这些模型提供了几个有用的性质:• 它们提供了一种简单的方式将概率模型的结构可视化,可以用于设计新的模型.• 通过观察图形,我…
概率图模型(Probabilistic Graphical Model) 有向图模型 信念网络 贝叶斯网络 无向模型 马尔科夫随机场 马尔科夫网络…
概率图模型 基于R语言 这本书中的第一个R语言程序 prior <- c(working =0.99,broken =0.01) likelihood <- rbind(working = c(good=0.99,bad=0.01),broken =c(good=0.6,bad=0.4)) data <- c("bad","bad","bad","bad") bayes <- function(prio…
深度学习 vs. 概率图模型 vs. 逻辑学 摘要:本文回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学.概率方法和深度学习.文章按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器学习的未来走向做些预测. [编者按]在上个月发表博客文章<深度学习 vs. 机器学习 vs. 模式识别>之后,CMU博士.MIT博士后及vision.ai联合创始人Tomasz Malisiewicz这一次带领我们回顾50年来人工智能领域三大范式(逻辑学.概率方法和深度学习)的演变历程.通过本文我…
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概率模型与计算机视觉”林达华美国麻省理工学院(MIT)博士   上世纪60年代, Marvin Minsky 在MIT让他的本科学生 Gerald Jay Sussman用一个暑假的时间完成一个有趣的Project: “link a camera to a computer and get the c…
一.ML方法分类:          产生式模型和判别式模型 假定输入x,类别标签y         -  产生式模型(生成模型)估计联合概率P(x,y),因可以根据联合概率来生成样本:HMMs         - 判别式模型(判别模型)估计条件概率P(y|x),因为没有x的知识,无法生成样本,只能判断分类:SVMs,CRF,MEM 一个举例:   (1,0), (1,0), (2,0), (2, 1) 产生式模型: p(x,y): P(1, 0) = 1/2, P(1, 1) = 0 , P(…
原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系列来自Stanford公开课Probabilistic Graphical Model中Daphne Koller 老师的讲解.(https://class.coursera.org/pgm-2012-002/class/index) 主要内容包括(转载请注明原始出处http://blog.csdn…
概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over a graph,概率图模型是定义在一副图上的联合概率分布(joint probability distribution). 图模型分为两种: 有向图(directed graphs):bayesian networks 无向图(undirected graphs):Markov random fie…
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度. 1763年,民间科学家Thomas Bayes发表了一篇名为<An essay towards solving a problem in the doctrine of chances>的论文, 这篇论文发表后,在当时并未产生多少影响,但是在20…
概率图的学习真的要接近尾声了啊,了解的越多越发感受到它的强大.这周的作业本质上是data mining.从数据中学习PGM的结构和参数,完全使用数据驱动 —— No structure, No parameters. Data tell us everything 1.识别外星人 如此强大的工具要用来做一件极其逗逼的事情:在给定肢体位姿条件下,从图形中识别外星人...显而易见,地球人只有两手两脚,外星人却有4手2脚!给定的肢体位姿以三坐标的形式出现(y,x, angle),其中x,y 代表肢体的…
CPD是conditional probability distribution的缩写,翻译成中文叫做 条件概率分布.在概率图中,条件概率分布是一个非常重要的概念.因为概率图研究的是随机变量之间的练习,练习就是条件,条件就要求条件概率. 对于简单的条件概率而言,我们可以用一个条件概率表来表达.如图1所示.图1 中表达的是p(g|i,d).幸运的是id都只有两个取值,是一个伯努利分布的函数.但是如果i d 有六个取值呢?比如骰子.那么这张表就会猛然增加到6^2那么长.这是不科学的.并且,常规情况下…
发现一个DL的博客,对文章分类归纳做的比较好:第三篇文章中的模型可以重点参考 “自然语言学习资料的汇总” 综述 | 一文读懂自然语言处理NLP(附学习资料) 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 NLP大赛冠军总结:300万知乎多标签文本分类任务(附深度学习源码) 知乎看山杯夺冠记…
1 引言 主题模型是文本挖掘的重要工具,近年来在学术界和工业届都获得了非常多的关注.学术界的工作主要集中在建模层面,即提出各种各样的主题模型来适应不同的场景,因此缺乏指导主题模型在工业场景落地的资源和文献. 本文主要是以<Familia:开源的中文主题模型应用工具包>为参考资料,入门NLP领域.该文结合开源工具Familia(百度开源),总结主题模型在工业届的一些典型应用案例,从而方便用户找到适合自己任务的模型以及该模型的应用方式. 2 主题模型概念 以LDA为代表的主题模型,训练的结果一般是…
概率分布(Distributions) 如图1所看到的,这是最简单的联合分布案例,姑且称之为学生模型. 图1 当中包括3个变量.各自是:I(学生智力,有0和1两个状态).D(试卷难度,有0和1两个状态).G(成绩等级,有1.2.3三个状态). 表中就是概率的联合分布了,表中随便去掉全部包括某个值的行.就能对分布表进行缩减. 比如能够去掉全部G不为1的行.这样就仅仅剩下了1.4.7.10行,这样他们的概率之和就不为1了,所以能够又一次标准化(Renormalization).如图2所看到的. wa…
CPD是conditional probability distribution的缩写,翻译成中文叫做 条件概率分布.在概率图中,条件概率分布是一个非常重要的概念.因为概率图研究的是随机变量之间的练习,练习就是条件,条件就要求条件概率. 对于简单的条件概率而言,我们可以用一个条件概率表来表达.如图1所示.图1 中表达的是p(g|i,d).幸运的是id都只有两个取值,是一个伯努利分布的函数.但是如果i d 有六个取值呢?比如骰子.那么这张表就会猛然增加到6^2那么长.这是不科学的.并且,常规情况下…
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/249 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 ShowMeAI为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learn…
我们依旧使用"学生网络"作为样例,如图1. 图1 首先给出因果判断(Causal Reasoning)的直觉解释. 能够算出来 即学生获得好的推荐信的概率大约是0.5. 但假设我们知道了学生的智商比較低,那么拿到好推荐信的概率就下降了: 进一步,假设又同一时候知道了考试的难度非常低,那么他拿到好的推荐信得概率又上升了,甚至还能超过最初的概率: 上述这个过程就是因果判断,你看它是顺着箭头的方向进行判断. 其次给出信度判断(Evidential Reasoning)的直觉解释.如图2. 图…
将LDA跟多元统计分析结合起来看,那么LDA中的主题就像词主成分,其把主成分-样本之间的关系说清楚了.多元学的时候聚类分为Q型聚类.R型聚类以及主成分分析.R型聚类.主成分分析针对变量,Q型聚类针对样本. PCA主要将的是主成分-变量之间的关系,在文本中LDA也有同样的效果,将一撮词(变量)变成话题(主成分),同时通过画像主成分,可以知道人群喜欢什么样子的话题: Q型聚类代表样本之间的群落关系. LDA假设前提:主题模型中最主要的假设是词袋假设(bag of words),指通过交换文档内词的次…
有向图模型:directed acyclic graph  DAG  贝叶斯网络 对称的,无向图, UGM: undirected graphic model  UGM, 更有名的名称是MRF,markov random field 马尔科夫随机场 discriminative UGM: 高大上的名字是,条件随机场,CRF, conditional random fields MRF的特例: hopfield network hopfield network的特例 Boltsmann machi…
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdYAAAFPCAIAAAB/EXiGAAAgAElEQVR4nO2df4wl1XXn6/+0VuG/IIKS1cjO5I8YGbYsERwFFvlHQHGBLIRM7AlGZYGVIALRY+QQ41FMrdbprHdxBbHRati8UbKQ3dTa8cRJV5LpELrWNMrMvvF42VYlw+zYtT1KE6rXM2Nug9/Qd/+4/e47r96vW1X31j313vmo/kDucb/qelXfO…