BZOJ 4903: [Ctsc2017]吉夫特 数论+dp】的更多相关文章

思路很巧妙的一道题 ~ 这个应该不完全是正解,复杂度约为 $O(3\times 10^8)$,有时间再研究研究正解. 首先,最裸的暴力是按照权值从小到大枚举每一个数,然后枚举后面的数来更新方案数,是 $O(n^2)$ 的. 然后,我们可以用lucas定理来模拟那个组合数,会发现只需满足大数&小数=小数即可. 这个的话可以枚举子集,复杂度就是 $O(3^{18})$ 左右的,大概能过 ~ code: #include <bits/stdc++.h> #define ll long lon…
题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会化成4种情况:\(C(0,1),C(0,0),C(1,0),C(1,1)\). 后三种情况都是1,\(C(0,1)\)不存在(=0).所以如果\(C(n,m)mod\ 2\)为偶数,那么在Lucas的过程中一定出现了\(C(0,1)\). \(mod\ 2\)的过程容易想到位运算. 由\(C(n,m)mod…
首先根据lucas, \[ C_n^m\%2=C_{n\%2}^{m\%2}*C_{n/2}^{m/2} \] 让这个式子的结果为计数的情况只有n&m==m,因为m的每一个为1的二进制位都需要n中这一位为1,否则结果就是0 所以枚举子集,设f[i]为以i开头的合法子序列个数,dp的时候枚举子集从后往前dp即可 #include<iostream> #include<cstdio> using namespace std; const int N=300005,mod=1e9…
题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2\neq 0$.答案对 $10^9+7$取模. 输入 第一行一个整数 $n$ . 接下来 $n$ 行,每行一个整数,这 $n$ 行中的第 $i$ 行,表示 $a_i$ . $1\le n\le 211985,1\le a_i\le 233333$ 输出 一行一个整数表示答案. 样例输入 415731…
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation">nn&m==m" role="presentation">m==mm==m,也就是说n是m的子集,这不就显然了吗 非常友好的枚举子集DP f[i]表示以i结尾的不下降序列的方案数什么的 #include<bits/stdc++.h> us…
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Father[i] 之间的边对答案的贡献(比如这条边对黑点对距离和的贡献就是子树内部的黑点数 * 子树外部的黑点数 * 这条边的权值). 然后DFS来求,枚举 i 的每个儿子 j,现在的 f[i][] 是包含了 [1, j-1] 子树,然后两重循环枚举范围是 [1, j - 1] 的子树总 Size 和…
题目描述 输入 输出 样例输入 3 2 1 3 2 5 1 样例输出 8 6 75 题解 语文题+数论+dp 花了大段讲述什么叫mu,什么叫phi,只是新定义的mu将2看作有平方因子,新定义的phi(1)=0. 要求的就是mu值为1的数的phi值之和.所有mu值为-1的phi值之和.以及所有mu值为0的phi值之和. 先只考虑前两种,此时无论质因子有多少个,能够使用的只有1个.如果p不是2,那么就有两种情况:使用和不使用.使用的话,素数个数+1,也就是mu变为相反数. 又因为phi是积性函数,所…
Bzoj 1055: [HAOI2008]玩具取名 (区间DP) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1055 区间动态规划和可达性DP的好题. 开始WA了几次,感到非常奇怪. 原因竟然是n被定义了char型,真是zz了. \(f[i][j][k]\)表示区间\(i\)到\(j\)可以由\(k\)这个字符是否可以转变过来. 转移的时候枚举中间点转移就好了. #include <iostream> #include <…
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个…
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u,v之间有一条边,图上u,v对应的点之间也有一条边. \(n \leq 17\) 分析 看到\(n \leq 17\),我们应该想到状态压缩.但直接用子集dp的时间复杂度为\(O(3^nn^3)\),会TLE.所以我们压缩的状态可能有问题,考虑优化. 显然题目给了两个限制: 原树中的每条边都要在图中…
正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有8个不同质因子,所以考虑状压记录每个质因子的系数是否取到了上界&下界. 状压$dp$就完事了. $dbq$写得有点简陋,仔细港下趴$kk$ 首先经过前面一番操作,题目已经变成了,给定一些集合,求或起来为全集的方案数$QwQ$ 考虑这个强制选$x$怎么搞鸭,先设$st$表示$x$的状态,$tot$表示…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/problem/300 题解 真 - 签到题. 对于一个组合数,直接进行 Luca 定理. \[ \binom nm = \binom {\frac n2}{\frac m2} \binom {n \bmod 2}{m\bmod 2} \] 可以发现,对于每一个二进制位,如果出现 \((0, 1)\)…
http://uoj.ac/problem/300 预备知识: C(n,m)是奇数的充要条件是 n&m==m 由卢卡斯定理可以推出 选出的任意相邻两个数a,b 的组合数计算C(a,b)必须是奇数 所以可以设dp[i][j] 表示前i个数里面,选的最后一个数是第j个数的方案数 转移的时候,枚举前i-1个数选的最后一个数k, 若C(k,i)是奇数,dp[i][j]+=dp[i-1][k] 时间复杂度:O(n^3) #include<cstdio> #include<iostream&…
送70分,预处理组合数是否为偶数即可. 剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数.这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接枚举子集即可. #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=l; i<=r; i++) using namespace std; ,mod=; int n,ans,a[N],f[N],pos…
题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} {\lfloor \frac{n}{2^{i - 1}} \rfloor \mod 2^i \choose \lfloor \frac{m}{2^{i - 1}} \rfloor \mod 2^i} \pmod 2\] 即 \[{n \choose m} = \prod_{each.bit.of.n.…
题意 满足$b_1 < b_2 < \dots < b_k$且$a_{b_1} \geqslant a_{b_2} \geqslant \dots \geqslant a_{b_k}$ Sol 组合数取模? 肯定考虑Lucas定理 考虑Lucas定理在最后一步肯定会化为$C(1, 1), C(1, 0), C(0, 0), C(0, 1)$. 很显然$C(0,1)$不存在,而其他的都等于$1$,因此当最后分解为$C(0, 1)$的时候不满足条件. 具体怎么判断呢?观察上式可以得到一个普遍…
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案. 为了避免重复的方案被转移,所以我们以硬币种类为第一层循环,这样阶段性的增加硬币. 一定要注意这个第一层循环要是硬币种类,并且初始 f[0] = 1. f[0] = 1; for (int i = 1; i <= 4; ++i) { for (int j = B[i]; j <= MaxS; +…
LOJ BZOJ 洛谷 哪张能力牌能乘攻击啊,太nb了叭 显然如果有能力牌,那么应该选最大的尽可能的打出\(k-1\)张. 然后下面说的期望都是乘总方案数后的,即所有情况的和.然后\(w_i\)统一用\(A_i\)表示了. \(Solution1\) 所以考虑枚举最终抽到了几张能力牌.那么我们要算:\(F(n,m)\)表示抽到\(n\)张攻击牌,打出最大的\(m\)张的期望伤害:\(G(n,m)\)表示抽到\(n\)张能力牌,打出最大的\(m\)张的期望倍数. 考虑怎么算\(F(n,m)\).不…
BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给\(x\)带来的概率\(g_x\),和\(x\)及其子树通电给\(x\)带来的概率\(f_x\). 对于两个独立的事件\(A,B\),由概率加法公式,\(P(A+B)=P(A)+P(B)-P(A)P(B)\),\(F_x=f_x+g_x-f_xg_x\). 令\(p_x\)表示\(x\)本身通电的概…
BZOJ LOJ 洛谷 老年退役选手,都写不出普及提高DP= = 在儿子那统计贡献,不是在父亲那统计啊!!!(这样的话不写这个提高DP写记忆化都能过= =) 然后就令\(f[x][a][b]\)表示在\(x\)节点上面有\(a\)条不修的公路\(b\)条不修的铁路的最小花费,在叶节点处统计贡献,转移的时候枚举不修哪个即可. 对于\(f\)数组第一维可以卡卡空间,把不用的标号回收,同一时刻只会有\(80+\)个有用节点. 注意如果叶子节点设成负值,用数组\(id[x]\)的时候要注意!!!(访问数…
BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0}^mi\ \mathbb{xor}\ j\).这个数据范围考虑数位DP.(其实统计一下\(\leq n\)和\(\leq m\)中每位为\(1\)的数有多少个就行了...) 如果你做过字节跳动冬令营网络赛 D.The Easiest One(没做过也行),就可以想到枚举每一位的时候,同时枚举\(x,…
BZOJ 二维\(DP\)显然.尝试换成一维,令\(f[i]\)表示,强制把\(i\)放到\(a_i\)位置去,现在能匹配的最多数目. 那么\(f[i]=\max\{f[j]\}+1\),其中\(j<i,\ a_j<a_i,\ j-a_j\leq i-a_i\).就是三维偏序,可以\(CDQ\). 这三个不等式很相似,再观察一下,发现由\(a_i>a_j,\ i-a_i\geq j-a_j\)就可以推出\(i>j\). 所以只要满足两个条件就可以了,即二维偏序. 同时转移比较特殊,…
题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选择某些种物品每种至少一件. 物品价值可能有负.问在最优策略下期望得分. \(Solution\) 并不像期望DP..(这题倒推也不是因为像期望DP那样) 最优解我以为还要贪心,其实只需要在枚举过程中取个max.. 数据范围显然可以用f[i][s]表示当前是第i次,选择过的物品的集合为s时的最大期望得…
题目链接 BZOJ 洛谷 AC代码: 区间DP,f[i][j]表示消掉i~j需要的最少珠子数. 先把相邻的相同颜色的珠子合并起来. 枚举方法一样,处理一下端点可以碰撞消除的情况就行. 当然合并会出现问题,比如有多个同色珠子但是可以分配给两边分别匹配,比如:https://www.luogu.org/discuss/show/8416?page=1. 没办法 写不对. 注意颜色还可能是非正数. //1820kb 108ms #include <cstdio> #include <cctyp…
中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yuangen(LL p,LL phi){ ; ;i*i<=phi;i++) ) f[++c]=i,f[++c]=phi/i; ;;g++){ int j; ;j<=c;j++) ) break; ) return g; } ; } 求原根 void Split(int x){ num=; ;i*i&…
uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\). 由于\(\binom{n\%2}{m\%2}\)的取值只可能是\(0\)或\(1\),以为我们希望\(\binom nm=1\mod 2\),所以\(\binom{n\%2}{m\%2}\)应该始终取值为\(1\).因为\(\binom 00=\binom 10=\binom 11=1,\bin…
题目传送门 题意:一个置换群,经过最少k次置换后还原.问给一个N个元素,在所有的置换群里,有多少个不同的k. 分析:这道题可以转化成:N = Σ ai ,求LCM ( ai )有多少个不同的值.比如N=10时,k可为:1,2,3,2*2,5,2*3,7,2*2*2,3*3,2*5,2*2*3,2*7,3*5,2*2*5,3*7,2*3*5,共16个,这里用到了唯一分解定理:每个大于1的自然数均可写为质数的积,而且这些素因子按大小排列之后,写法仅有一种方式.例如:  .那么先预处理出1000内的素…
题面:BZOJ传送门 洛谷传送门 题目大意:略 细节贼多的虚树$DP$ 先考虑只有一次询问的情况 一个节点$x$可能被它子树内的一个到x距离最小的特殊点管辖,还可能被管辖fa[x]的特殊点管辖 跑两次$dfs$即可,时间$O(n)$ 再考虑一条链的情况 一条链上有很多个特殊点,相邻两个特殊点$x,y$之间可能有很多连续的非特殊点,那么在这些连续的非特殊点上会有一个分界,前面一部分被$x$管辖,后面一部分被$y$管辖 在链上二分即可,时间$O(mlogm)$ 正解就是把上面两种情况结合起来..用虚…
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][Status][Discuss] Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P…
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<=500000) 考虑树形DP,我们令mn[i]表示i节点无法与1节点相连切除的最小权值.显然有mn[i]=min(E(fa,i),mn[fa]).大致就是i到1的简单路径上的最小边.我们对于每个询问.把询问的点不妨称为关键点.令dp[i]表示i节点不能与子树的关键点连接切掉的最小权值.那么有,如果son[i]…