Kaggle实战——点击率预估】的更多相关文章

https://blog.csdn.net/chengcheng1394/article/details/78940565 原创文章,转载请注明出处: http://blog.csdn.net/chengcheng1394/article/details/78940565 请安装TensorFlow1.0,Python3.5 项目地址: https://github.com/chengstone/kaggle_criteo_ctr_challenge- 前言点击率预估用来判断一条广告被用户点击的…
1GBDT和LR融合      LR模型是线性的,处理能力有限,所以要想处理大规模问题,需要大量人力进行特征工程,组合相似的特征,例如user和Ad维度的特征进行组合.      GDBT天然适合做特征提取,因为GBDT由回归树组成所以, 每棵回归树就是天然的有区分性的特征及组合特征,然后给LR模型训练,提高点击率预估模型(腾讯).      例如,输入样本x,GBDT模型得到两颗树tree1和tree2,遍历两颗树,每个叶子节点都是LR模型的一个维度特征,在求和每个叶子*权重及时LR模型的分类…
CTR点击率预估干货分享 http://blog.csdn.net/bitcarmanlee/article/details/52138713…
转载:https://www.infoq.cn/article/XA055tpFrprUy*0UBdCb https://www.zhihu.com/question/20830906/answer/681688041…
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑…
0. 前言 1.任务描述 2.数据概览 3. 数据准备 4. 模型训练 5. kaggle实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题." 本系列参考书籍 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1.任务描述 预测任务:根据某时刻房价相关数据,预测区域内该时刻任一街区的平均房价,决定是否对投资该街区的房子.…
一 背景       首先举个例子:                          正样本(90)                       负样本(10)         模型1预测        正(90)                                正(10) 模型2预测        正(70)负(20)                正(5)负(5) 结论:        模型1准确率90%:        模型2 准确率75%              考虑对…
本篇博客是基于以Kaggle中手写数字识别实战为目标,以KNN算法学习为驱动导向来进行讲解. 写这篇博客的原因 什么是KNN kaggle实战 优缺点及其优化方法 总结 参考文献 写这篇博客的原因 写下这篇博客,很大程度上是希望能记录和督促自己学习机器学习的过程,同时也在以后的学习生活中,可以将以前的博客翻来看看,重新回顾知识. 什么是KNN? 在模式识别和机器学习中,k-近邻算法(以下简称:KNN)是一种常用的监督学习中分类方法.KNN可以说是机器学习算法中最简单的一个算法,我希望它能带领大家…
英文原文:14 design tips for more clickable banner ads 译文:http://www.uisdc.com/banner-click-rate 虽然互联网发展迅速,但是利用Banner来推广产品,依然是王道. 很多公司都采用这种形式进行宣传,优点多多:便宜.效果可监测.行之有效. 现在呢,假设有客户让你帮忙设计个Banner广告,你要怎么设计呢?要怎么提高广告的点击率呢? 下面将详细讲述Banner设计的14条建议. 1. 选择最有效的Banner尺寸 根…
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题." 本系列参考书 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1. MNIST 数据集 MNIST是最常用的用来实验分类模型的数据集,有7w多张手写0…