pandas 之 索引重塑】的更多相关文章

import numpy as np import pandas as pd There are a number of basic operations for rearanging tabular data. These are alternatingly referred to as reshape or pivot operations. 多层索引重塑 Hierarchical indexing provides a consistent way to rearrange data in…
pandas重置索引的几种方法探究 reset_index() reindex() set_index() 函数名字看起来非常有趣吧! 不仅如此. 需要探究. http://nbviewer.jupyter.org/ https://gitee.com/duan-qs/ipython-notebook/test_pd_reset_index.ipynb http://nbviewer.jupyter.org/gitee/duan-qs/ipython-notebook/blob/master/t…
pandas层次化索引 1. 创建多层行索引 1) 隐式构造 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组 Series也可以创建多层索引 import numpy as np import pandas as pd from pandas import Series,DataFrame s = Series(data = [1,2,3,"a"], index = [["a","a","b",…
我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列.区域.单元格.其对应使用的方法如下:一. 行,列 --> df[]二. 区域   --> df.loc[], df.iloc[], df.ix[]三. 单元格 --> df.at[], df.iat[] 下面开始练习: import numpy as np import pandas as pd df = pd.DataFrame(np.random.randn(6,4), index=list('abcdef'), co…
Pandas的标签处理需要分成多种情况来处理,Series和DataFrame根据标签索引数据的操作方法是不同的,单列索引和双列索引的操作方法也是不同的. 单列索引 In [2]: import pandas as pd In [3]: import numpy as np In [4]: df = pd.DataFrame(np.ones((2, 4)), index=list("AB"), columns=list("abcd")) In [5]: df.ilo…
#重新索引会更改DataFrame的行标签和列标签.重新索引意味着符合数据以匹配特定轴上的一组给定的标签. #可以通过索引来实现多个操作 - #重新排序现有数据以匹配一组新的标签. #在没有标签数据的标签位置插入缺失值(NA)标记. #示例 import pandas as pd import numpy as np N=20 df = pd.DataFrame({ 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'), 'x': n…
Pandas--ix vs loc vs iloc区别 0. DataFrame DataFrame 的构造主要依赖如下三个参数: data:表格数据: index:行索引: columns:列名: index 对行进行索引,columns 对列进行索引: import pandas as pd data = [[1,2,3],[4,5,6]] index = [0,1] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index…
重新索引会更改DataFrame的行标签和列标签.重新索引意味着符合数据以匹配特定轴上的一组给定的标签. 可以通过索引来实现多个操作 - 重新排序现有数据以匹配一组新的标签. 在没有标签数据的标签位置插入缺失值(NA)标记. 示例 import pandas as pd import numpy as np N=20 df = pd.DataFrame({ 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'), 'x': np.lin…
层级索引(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引. 示例代码: import pandas as pd import numpy as np ser_obj = pd.Series(np.random.randn(12),index=[ ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd',…
层级索引(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引. 示例代码: import pandas as pd import numpy as np ser_obj = pd.Series(np.random.randn(12),index=[ ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd',…