# 博客转自https://blog.csdn.net/weixin_39561100/article/details/80879211 主要是将<机器学习实战>中的算法实现一遍,后续会慢慢更新...... 决策树ID3分类的实现:https://github.com/ZhangXiangCHN/Demo/blob/master/DecisionTree_for_ID3.py K近邻算法的实现(基于矩阵计算):https://github.com/ZhangXiangCHN/Demo/blob…
一.基于Sklearn的PCA代码实现 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA digits =…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
Mlab了解 Mlab是Mayavi提供的面向脚本的api,他可以实现快速的三维可视化,Mayavi可以通过Mlab的绘图函数对Numpy数组建立可视化. 过程为: .建立数据源 .使用Filter(可选)对数据进行加工 .添加可视化模块,我们可以通过修改可视化模块的属性,来修改可视化场景 mgrid和ogrid区别 一:基于Numpy数组的绘图函数 (一)3D绘图函数--Point3d(点图像0维) 这里我们可以看到Point3D参数的描述,是对vtk对象的整体描述,因为Mayavi是对VTK…
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN)的实现,本文主要重在理解原理和底层实现. 一.概述 1.1 卷积神经网络(CNN) 卷积神经网络(CNN)是一种具有局部连接.权重共享和平移不变特性的深层前馈神经网络. CNN利用了可学习的kernel卷积核(filter滤波器)来提取图像中的模式(局部和全局).传统图像处理会手动设计卷积核(例如高…
1. 感知机模型   感知机Perception是一个线性的分类器,其只适用于线性可分的数据.          f(x) = sign(w.x + b) 其试图在所有线性可分超平面构成的假设空间中找到一个能使训练集中的数据可分的超平面.因此,它找到的并不一定是最优的,即只是恰好拟合了训练数据的超平面. 2. 学习 感知机的学习策略为:最小化误分类点到超平面的距离. 3. 基于numpy的感知机实现 1 # coding: utf-8 2 import numpy as np 3 4 5 def…
声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多或少会用到机器学习的算法.本文为您总结一下常见的机器学习算法,以供您在工作和学习中参考. 机器学习的算法很多.很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的.这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的分类. 博主在原创基础上加入了遗传…
机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多或少会用到机器学习的算法.这里南君先生为您总结一下常见的机器学习算法,以供您在工作和学习中参考. 机器学习的算法很多.很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的.这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性. 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式.在机器学习或者人工智能领域,人们首先会考虑算法的学习方式.在机器学习领域,有几种主要…
1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定的值.比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的概率θ始终都是1/2,即不随观察结果X 的变化而变…
使用机器学习排序算法LambdaMART有一段时间了,但一直没有真正弄清楚算法中的所有细节. 学习过程中细读了两篇不错的博文,推荐给大家: 梯度提升树(GBDT)原理小结 徐博From RankNet to LambdaRank to LambdaMART: An Overview 但经过一番搜寻之后发现,目前网上并没有一篇透彻讲解该算法的文章,所以希望这篇文章能够达到此目的. 本文主要参考微软研究院2010年发表的文章From RankNet to LambdaRank to LambdaMA…