[NOI2018] 归程 可持久化并查集】的更多相关文章

题目传送门 归程 格式难调,题面就不放了. 分析: 之前同步赛的时候反正就一脸懵逼,然后场场暴力大战,现在呢,还是不会$Kruskal$重构树,于是就拿可持久化并查集做. 但是之前做可持久化并查集的时候感觉掌握的并不熟,还是需要参照别人的题解,不过至少现在对可持久化的理解更深了一步,而且终于这题给调对了. Code: //It is made by HolseLee on 23rd Aug 2018 //Luogu.org 4768 #include<cstdio> #include<c…
题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个n 个节点.m 条边的无向连通图(节点的编号从 1至 n).我们依次用 l,a描述一条边的长度.海拔. 作为季风气候的代表城市,魔力之都时常有雨水相伴,因此道路积水总是不可避免 的.由于整个城市的排水系统连通,因此有积水的边一定是海拔相对最低的一些边.我们用水位线来描述降雨的程度,它的意义是:所有海拔不超过水位线的边都是有积水的. Yazid 是一名来自魔力之都的OIer,刚参加完ION2018 的他…
Description Input Output Sample Input1 14 31 2 50 12 3 100 23 4 50 15 0 23 02 14 13 13 2 Sample Output1 05020050150 Sample Input2 15 51 2 1 22 3 1 24 3 1 25 3 1 21 5 2 14 1 35 15 22 04 0 Sample Output2 0 2 3 1 HINT Solution 会了可持久化并查集这题可能会被卡的正解就很好写了………
解法一: 1.首先想到离线做法:将边和询问从大到小排序,并查集维护连通块以及每个连通块中所有点到1号点的最短距离.$O(n\log n)$ 配合暴力等可以拿到75分. 2.很容易想到在线做法,使用可持久化并查集,询问时二分即可. 不能使用路径压缩,应该按秩合并,注意秩是树的深度而不是大小.$O((E+Q)\log^2 N)$ 由于常数过大,基本过不去. 3.考虑优化算法二,发现访问历史版本并不需要修改而只需要询问,所以一开始只使用普通的并查集,用可持久化数组记录并查集的修改情况. $O((N+E…
题目:http://uoj.ac/problem/393 题解:https://www.cnblogs.com/HocRiser/p/9368067.html 但过不了 UOJ 的 hack 数据.不知道是哪里出错.之后再管吧. #include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<queue> #define mkp make_pair…
闲话 一个蒟蒻,在网络同步赛上进行了这样的表演-- T2组合计数不会,T3字符串数据结构不会,于是爆肝T1 一开始以为整个地图都有车,然后写了2h+的树套树,终于发现样例过不去 然后写可持久化并查集Debug到13:20过了前4个样例,然后第5个T飞了. FST? ...... FST! 完美收获50分暴力分. 原来是按秩合并那里咕咕了. 从50到100的蜕变,只需一行,你值的拥有. 思路 不会kruscal重构树 容易发现,假设我们确定了水位线,那么就确定了图中有哪些边是连通的.这时候的答案该…
Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0<n,m<=2*10^4 Input Output Sample Input Sample Output Solution 用rope实现可持久化数组,用rope的历史记录功能实现可持久化并查集,通过时间168ms #include<cstdio> #include<ext/rop…
3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status][Discuss] Description n个集合 m个操作操作:1 a b 合并a,b所在集合2 k 回到第k次操作之后的状态(查询算作操作)3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0<n,m<=2*10^4 Input Output Sample Input 5 6…
我是萌萌的任意门 可持久化并查集的模板题-- 做法好像很多,可以标号法,可以森林法. 本来有O(mloglogn)的神算法(按秩合并+倍增),然而我这种鶸渣就只会写O(mlog2n)的民科算法--再加上人傻常数大如狗,速度简直虚死-- 言归正传,鉴于标号法用的不多,这里用的是森林法.又由于并查集的路径压缩只能均摊logn,如果可持久化一下就废了.所以路径压缩大可不写,正好偷偷懒. 当然,路径压缩都省了,那按秩合并就不能不写了(要不然为啥要出加强版--).然而我太鶸,不会写按秩合并,一向都是用按大…
没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc++.h> #define ll long long #define N 20005 using namespace std; inline int read(){ ,f=;char ch=getchar(); ;ch=getchar();} *x+ch-';ch=getchar();} return…