Multiple Feature Fusion via Weighted Entropy for Visual Tracking ICCV 2015 本文主要考虑的是一个多特征融合的问题.如何有效的进行加权融合,是一个需要解决的问题.本文提出一种新的 data-adaptive visual tracking approach 通过 weighted entropy 进行多特征融合.并非像许多方法所做的简单的链接在一起的方法,本文采用加权的 entropy 来评价目标状态和背景状态之间的区分性,…
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper Project Page:http://guanghan.info/projects/ROLO/ GitHub:https://github.com/wangxiao5791509/ROLO 摘要:本文提出了一种新的方法进行空间监督 RCNN 来进行目标跟踪.我们通过深度神经网络来学习到  loc…
基于自适应颜色属性的目标追踪 Adaptive Color Attributes for Real-Time Visual Tracking 基于自适应颜色属性的实时视觉追踪 3月讲的第一篇论文,个人理解,存在非常多问题,欢迎交流! 这是CVPR2014年的文章. 名字翻译为基于自适应选择颜色属性的实时视觉跟踪.首先理解什么是Adaptive color attributes,文章中colorattributes把颜色分为11类,就是将RGB三种颜色细化为黑.蓝.棕.灰.绿.橙.粉.紫.红.白和…
Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filter引入tracking领域内的文章,文中所提的Minimum Output Sum of Squared Error(MOSSE),可以说是后来CSK.STC.Color Attributes等tracker的鼻祖.Correlation Filter(以下简称CF)源于信号处理领域,后被运用于图…
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的成功能否迁移到PASCAL VOC的目标检测任务上呢?基于这个问题,论文提出了R-CNN. 基本步骤:如下图所示,第一步输入图像.第二步使用生成region proposals的方法(有很多,论文使用的是seletivce search,ImageNet2013检测任务的冠军UVA也使用了该算法)提…
Attentional Correlation Filter Network for Adaptive Visual Tracking CVPR2017 摘要:本文提出一种新的带有注意机制的跟踪框架,该框架会选择部分有关联的相关滤波器用于提高跟踪的鲁棒性和计算效率.根据跟踪目标的动态特性,本文利用深度自注网络选择部分滤波器. 本文的主要的贡献在于以下几点: 本文引入自注相关滤波网络,用于动态目标的自适应跟踪 利用自注网络,关注最好的候选模型 增加相关滤波器的多样性,以覆盖目标的更多的变化 本文网…
Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv 摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索.这个问题是非常具有挑战性的,因为,视频的外观和运动是非常复杂的.传统 optical-flow-based solutions 当 flow estimation 失败的时候,就变得非常困难:而最新的基于神经网络的方法直接预测像素值,经常产生模糊的结果. 于是,在此motivation的基础上,作者…
Self-paced Clustering Ensemble自步聚类集成论文笔记 2019-06-23 22:20:40 zpainter 阅读数 174  收藏 更多 分类专栏: 论文   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/zpainter/article/details/93378052 文章目录 0.摘要 1.introduction 2.Related Work 2.…
打算整理一个关于Person Re-identification的系列论文笔记,主要记录近年CNN快速发展中的部分有亮点和借鉴意义的论文. 论文笔记流程采用contributions->algorithm pipeline>experiments->个人评价 Scalable Person Re-identification: A Benchmark Zheng L, Shen L, Tian L, et al. Scalable Person Re-identification: A…
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的…