bzoj1999 (洛谷1099) 树网的核——dfs】的更多相关文章

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1999  https://www.luogu.org/problemnew/show/P1099 “分析性质,O(n)扫描” 看了半天才懂...发现自己对树的直径的相关知识太不熟了... 这篇博客的讲解很详细:https://www.cnblogs.com/shenben/p/5895325.html 说一下自己的理解: 1.每个直径对答案的贡献是相同的: 因为所有直径都相交,所以不妨考虑公…
一道树的直径 树网的核 BZOJ原题链接 树网的核 洛谷原题链接 消防 BZOJ原题链接 消防 洛谷原题链接 一份代码四倍经验,爽 显然要先随便找一条直径,然后直接枚举核的两个端点,对每一次枚举的核遍历核上的每个点,用\(dfs\)求出核外节点到核的最大值即可,时间复杂度为\(O(n^3)\),这在\(NOIP\)的原数据范围下是可以过的,但对于数据加强版就必须要优化了. 发现当枚举到直径上的某个点时,核的另一端在不超过\(s\)的前提下显然越远越好.这样就直接优化掉一个\(n\)了,但我们还可…
P1099 树网的核 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网…
题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网中最长的路径成为树网的…
写在前面:由于是双倍经验就放一块了,虽然数据范围差的有点大. 题目链接 题意:在树的直径上选择一条长度不超过s的路径使这条路径上的点到树上任意点的最大距离最小. 这题数据好像非常水,我写了上界n^2不考虑多条直径还能过?不知道什么操作. 我就说说我的水法吧.dfs两遍求直径.处理直径上路径到直径两端的距离.然后再处理直径上每个点的最远距离,取min. 正确性显然. #include<bits/stdc++.h> #define mk make_pair using namespace std;…
传送门 80分 $ Floyd $ 树的直径可以通过枚举求出.直径的两个端点$ maxi,maxj $ ,由此可知对于一个点 $ k $ ,如果满足 $ d[maxi][k]+d[k][maxj]==d[maxi][maxj] $ 那么 $ k $ 点一定在直径上.分别枚举位于直径上的起点 $ s $ 与终点 $ t $ . $ ecg $ 定义为 $ max{d(v,F)} $ 那么枚举出的线段的 $ ecg $ 一定为: $ max{min{d[maxi][s],d[maxi][t]},mi…
传送门 之前看李煜东的书一直感觉是道神题. 然后发现这题数据范围只有300?300?300? 直接上floydfloydfloyd然后暴力就完了啊. 代码: #include<bits/stdc++.h> using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<<3)+(ans&l…
[BZOJ1999][codevs1167][Noip2007]Core树网的核 试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(treenetwork),其中V, E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a,b)表示以a,b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a,b)为a,b两结点间的距离. 一点v到一条路径P的距离为该…
链接https://www.luogu.org/problemnew/show/P1099 题目描述 设T=(V,E,W)是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称TTT为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a,b)表示以a,b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a,b)为a,ba两结点间的距离. D(v,P)=min…
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下: 行号 1 2 3 4 5 6 列号 2 4 6 1 3 5 这只是跳棋放置的一个解.请编一个程序找出所有跳棋放置的解.并把它们以上面的序列方法输出.解按字典顺序排列.请输出前3个解.最后一行是解的总个数. //以下的话来自usaco官方…