基于Python的函数回归算法验证】的更多相关文章

看机器学习看到了回归函数,看了一半看不下去了,看到能用方差进行函数回归,又手痒痒了,自己推公式写代码验证: 常见的最小二乘法是一阶函数回归回归方法就是寻找方差的最小值y = kx + bxi, yiy-yi = kxi+b-yi方差为∑(kxi + b - yi )^2f = k^2∑xi^2 + b^2 + ∑yi^2 +2kb∑xi - 2k∑xi*yi - 2yib求极值需要对其求微分,因为是二元函数,因此使用全微分公式,其极值点应该在两个元的偏微分都为0处δf/δk = 2k∑(xi^2…
8-28决定参加一下这个千万条的数据处理任务,因为场景和自己做过的一个回归分析预测差不多,第一天开始在小规模的数据上做准备工作. 第二次大修改版本 date 20160829 星期一¶ 原始数据处理,得到用户粉丝关系,微博转发在每个时间段的量,微博转发的总体深度 下一阶段目标,建立模型,实现基于时间序列的预测   第三次大修改版本 date 20160830 星期二 将这些运算转移到Linux平台上,因为有的迭代完全让我的电脑的内存受不了 这次版本的主要的目的是计算出某个微博的深度的时间序列的变…
摘要 网上有很多关于RSA的解密脚本,欧拉函数.欧几里得函数什么的,对于一个大专生的我来说,一窍不通,至此经历了三天三夜,我翻阅了RSA的加密原理,以及其底层算法,专研出了一套我自己的解密算法,尚有不足,欢迎评论吐槽! RSA算法原理 RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥. RSA算法的具体描述如下:(1)任意选取两个不同的大素数p和q计算乘积 n = pq,n1 = (p-1)(q-1) :(2)…
关于正则表达式,当我们了解它就不难,不了解就很难,其实任何事情都是这样,没有人一生下来就啥都会,说白了,每个人都是一个学习了解进步的过程.学习和掌握正则表达式可能并不是太简单,因为它确实是有点像“外星语”. 为什么要用正则表达式 市面上很早就有关于正则表达式的专业技术书记,在软件开发.性能测试.自动化测试.测试开发中都可以看到正则表达式优美的舞姿. 对于静态文本内容, 因为有提供与预期的搜索结果匹配的确切文本内容,典型的搜索和替换操作已经足够了,但它缺乏灵活性.如果要搜索动态内容,这就变得很困难…
参考书目:<大话数据结构> 一.排序的基本概念和分类 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.排序算法,就是如何使得记录按照要求排列的方法. 排序的稳定性: 经过某种排序后,如果两个记录序号同等,且两者在原无序记录中的先后秩序依然保持不变,则称所使用的排序方法是稳定的,反之是不稳定的. 内排序和外排序 内排序:排序过程中,待排序的所有记录全部放在内存中 外排序:排序过程中,使用到了外部存储. 通常讨论的都是内排序. 影响内排序算法性能的三个因素:…
漏洞名称: Python‘ssl.match_hostname()’函数SSL证书验证安全绕过漏洞 CNNVD编号: CNNVD-201312-033 发布时间: 2013-12-04 更新时间: 2013-12-04 危害等级:    漏洞类型: 权限许可和访问控制 威胁类型: 远程 CVE编号:   漏洞来源: Christian Heimes Python是Python软件基金会的一套开源的.面向对象的程序设计语言.该语言具有可扩展.支持模块和包.支持多种平台等特点.         Py…
一.排序的基本概念和分类 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.排序算法,就是如何使得记录按照要求排列的方法. 排序的稳定性:经过某种排序后,如果两个记录序号同等,且两者在原无序记录中的先后秩序依然保持不变,则称所使用的排序方法是稳定的,反之是不稳定的. 内排序和外排序内排序:排序过程中,待排序的所有记录全部放在内存中外排序:排序过程中,使用到了外部存储.通常讨论的都是内排序. 影响内排序算法性能的三个因素: 时间复杂度:即时间性能,高效率的排序…
Contents    1. 协同过滤的简介    2. 协同过滤的核心    3. 协同过滤的实现    4. 协同过滤的应用 1. 协同过滤的简介 关于协同过滤的一个最经典的例子就是看电影,有时候不知道哪一部电影是我们喜欢的或者评分比较高的,那 么通常的做法就是问问周围的朋友,看看最近有什么好的电影推荐.在问的时候,都习惯于问跟自己口味差不 多的朋友,这就是协同过滤的核心思想. 协同过滤是在海量数据中挖掘出小部分与你品味类似的用户,在协同过滤中,这些用户成为邻居,然后根据他 们喜欢的东西组织…
加入实验室后,经过张老师的介绍,有幸与某公司合共共同完成某个项目,在此项目中我主要负责的是三维 pdf 报告生成.Dicom图像上亮度.对比度调整以及 Dicom图像三维重建.今天主要介绍一下完成Dicom图像三维重建的过程以及自己的心得体会.实现Dicom三维图像重建最主要用的VTK(Visualization Toolkit,也就是可视化工具包),由于今天的主题不是有关VTK,所以有关VTK的学习(包括VTK介绍.使用.实列),可以参考此链接:https://blog.csdn.net/wi…
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足,均值为0的高斯分布,即正态分布.这个假设是靠谱的,符合一般客观统计规律.若使 模型与测量数据最接近,那么其概率积就最大.概率积,就是概率密度函数的连续积,这样,就形成了一个最大似然函数估计.对最大似然函数估计进行推导,就得出了推导后结果: 平方和最小公式 注: 1.x的平方等于x的转置乘以x. 2…