原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://wgkgood.blog.51cto.com/1192594/1332340 前言* Hadoop是Apache开源组织的一个分布式计算开源框架,在很多大型网站上都已经得到了应用,如亚马逊.Facebook和Yahoo等等.对于我来说,最近的一个使用点就是服务集成平台的日志分析.服务集成平台的日志量将会很大,而这也正好符合了分布式计算的适用场景(日志分析和索引建立就是两大应用场景…
引言 Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点.但同时,它和其他的分布式文件系统的区别也是很明显的.HDFS是一个高 度容错性的系统,适合部署在廉价的机器上.HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用.HDFS放宽了一部分POSIX约束,来实 现流式读取文件系统数据的目的.HDFS在最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的.HDFS…
http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_design.html 引言 前提和设计目标 硬件错误 流式数据访问 大规模数据集 简单的一致性模型 “移动计算比移动数据更划算” 异构软硬件平台间的可移植性 Namenode 和 Datanode 文件系统的名字空间 (namespace) 数据复制 副本存放: 最最开始的一步 副本选择 安全模式 文件系统元数据的持久化 通讯协议 健壮性 磁盘数据错误,心跳检测和重新复制 集群均衡 数据完整性 元数据磁盘…
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_design.html 引言 前提和设计目标 硬件错误 流式数据访问 大规模数据集 简单的一致性模型 “移动计算比移动数据更划算” 异构软硬件平台间的可移植性 Namenode 和 Datanode 文件系统的名字空间 (namespace) 数据复制 副本存放: 最最开始的一步 副本选择 安全模式 文件系统元数据的持久化 通讯协议 健壮性 磁盘数据错误,心跳检测和重新复制 集群均衡 数据完整性…
Hadoop分布式文件系统是设计初衷是可靠的存储大数据集,并且使应用程序高带宽的流式处理存储的大数据集.在一个成千个server的大集群中,每个server不仅要管理存储的这些数据,而且可以执行应用程序任务.通过分布式存储和在各个server间交叉运算,集群和存储可以按需动态经济增长.以下的设计原则和经验是根据yahoo通过HDFS管理的40PB得来的. 1. HDFS简介 HDFS是一个分布式文件系统,并且为MapReduce分布式算法提供了一分析和传输大数据的框架.HDFS使用java编写,…
HDFS简介: 当数据集的大小超过一台独立物理计算机的存储能力时,就有必要对它进行分区 (partition)并存储到若干台单独的计算机上.管理网络中跨多台计算机存储的文件系统成为分布式文件系统 (Distributed filesystem).该系统架构于网络之上,势必会引入网络编程的复杂性,因此分布式文件系统比普通磁盘文件系统更为复杂. HDFS是基于流数据模式访问和处理超大文件的需求而开发的,它可以运行于廉价的商用服务器上.总的来说,可以将 HDFS的主要特点概括为以下几点: (1 )处理…
Hadoop分布式文件系统即Hadoop Distributed FileSystem.        当数据集的大小超过一台独立的物理计算机的存储能力时,就有必要对它进行分区(Partition)并存储到若干台单独的计算机上,管理网络中跨越多台计算机存储的文件系统成为分布式文件系统(Distributed FileSystem).    该系统架构与网络之上,势必引入网络编程的复杂性,因此分布式文件系统比普通磁盘文件系统更为复杂.例如:使文件系统能够容忍节点故障且不丢数据便是一个极大的挑战. …
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_user_guide.html 目的 概述 先决条件 Web接口 Shell命令 DFSAdmin命令 Secondary NameNode Rebalancer 机架感知(Rack awareness) 安全模式 fsck 升级和回滚 文件权限和安全性 可扩展性 相关文档 目的 本文档的目标是为Hadoop分布式文件系统(HDFS)的用户提供一个学习的起点,这里的HDFS既可以作为Hadoop集…
在一个经典的数据架构中,Hadoop是处理复杂数据流的核心.数据从各种系统中收集而来,并汇总导入到Hadoop分布式文件系统HDFS中,然后通过MapReduce或者其它基于MapReduce封装的语言如Hive,Pig等进行处理,将处理后的数据导出即可.具体例子而言,如果一个大型网站需要做网站点击率的分析,它将多个服务器采集的页面访问日志汇总,推送至HDFS中,启动MapReduce作业,接下来数据将被解析,汇总以及IP地址进行关联计算,生成的结果可以导入到关系型数据库中. 启动Hadoop…
Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数据访问,非常适合大规模数据集上的应用.要理解HDFS的内部工作原理,首先要理解什么是分布式文件系统. 1 .分布式文件系统 多台计算机联网协同工作(有时也称为一个集群)就像单台系统一样解决某种问题,这样的系统我们称之为分布式系统. 分布式文件系统是分布式系统的一个子集,它们解决的问题就是数据存储. 换句话说,它们是横跨在多台计算机上…