自然语言处理--Word2vec(一)】的更多相关文章

前一篇,word2vec(一)主要讲了word2vec一些表层概念,以及主要介绍CBOW方法来求解词向量模型,这里主要讲论文 Distributed Representations of Words and Phrases and their Compositionality中的skip-gram model方法,这可以被视作为一种概率式方法. 前面有一篇讲过自然语言处理的词频处理方法即TF-IDF,这种方法往往只是可以找出一篇文章中比较关键的词语,即找出一些主题词汇.但无法给出词汇的语义,比如…
一.自然语言处理与深度学习 自然语言处理应用 深度学习模型                       为什么需要用深度学习来处理呢 二.语言模型 1.语言模型实例: 机器翻译 拼写纠错                                                                     智能问答   1)机器翻译,比如要翻译高价,可能 P(high price) > P(large price),然后得到的结果就是high price 2)拼写纠错,比如 fi…
1.单词的向量化表示 一般来讲,词向量主要有两种形式,分别是稀疏向量和密集向量. 所谓稀疏向量,又称为one-hot representation,就是用一个很长的向量来表示一个词,向量的长度为词典的大小N,向量的分量只有一个1,其他全为0,1的位置对应该词在词典中的索引. 至于密集向量,又称distributed representation,即分布式表示.最早由Hinton提出,可以克服one-hot representation的上述缺点,基本思路是通过训练将每个词映射成一个固定长度的短向…
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 1.1.1 独热编码 1.1.2 分布式表示 1.2 CBOW & Skip-Gram 1.2.1 CBOW 1.2.2 Skip-gram 1.3 Word2vec 1.3.1 Word2vec基本思想 1.3.2 Hierarchical Softmax基本思路 1.3.3 Hierarchi…
卷 TOSHIBA EXT 的文件夹 PATH 列表卷序列号为 AE86-8E8DF:.│ python就业班-淘宝-目录.txt│ ├─01 网络编程│ ├─01-基本概念│ │ 01-网络通信概述.flv│ │ 02-IP地址.flv│ │ 03-Linux.windows查看网卡信息.flv│ │ 04-ip地址的分类-ipv4和ipv6介绍.flv│ │ 05-(重点)端口.mp4│ │ 06-端口分类:知名端口.动态端口.flv│ │ 07-socket介绍.mp4│ │ │ ├─02…
(1) 中科院自动化所的博士,用神经网络做自然语言处理:http://licstar.net (2) 分词项目:https://github.com/fxsjy/jieba(3) 清华大学搞的中文分词等NLP开源项目:https://github.com/thunlp (4)一个轻量级的分词开源软件:https://github.com/lionsoul2014/jcseg (5) 有一些信息检索的笔记:http://www.cnblogs.com/jcli/category/315064.ht…
word2vec 本来就是用来解决自然语言处理问题的,它在 NLP 中的应用是显然的. 比如,你可以直接用它来寻找相关词.发现新词.命名实体识别.信息索引.情感分析等:你也可以将词向量作为其他模型的输入,用于诸如文本分类.聚类等各种自然语言处理问题. 事实上,word2vec 的思想和工具,还可以应用于自然语言处理之外的其他领域.一个词,无非就是个符号:句子是词的序列,无非也就是个符号序列.如果我们能够在其他的应用场景中,构造出一些符号,还有这些符号形成的序列,那我们就可以试一把 word2ve…
在word2vec出现之前,自然语言处理经常把字词转为one-hot编码类型的词向量,这种方式虽然非常简单易懂,但是数据稀疏性非常高,维度很多,很容易造成维度灾难,尤其是在深度学习中:其次这种词向量中任意两个词之间都是孤立的,存在语义鸿沟(这样就不能体现词与词之间的关系)而有Hinton大神提出的Distributional Representation 很好的解决了one-hot编码的主要缺点.解决了语义之间的鸿沟,可以通过计算向量之间的距离来体现词与词之间的关系.Distributional…
同步笔者CSDN博客(https://blog.csdn.net/qq_37608890/article/details/81513882). 一.概述 本文将要讨论NLP的一个重要话题:Word2Vec,它是一种学习词嵌入或分布式数字特征表示(即向量)的技术.其实,在开展自然语言处理任务时,一个比较重要的基础工作就是有关词表示层面的学习,因为良好的特征表示所对应的词,能够使得上下午语义内容得以很好地保留和整体串起来.举个例子,在特征表示层面,单词“forest”和单词“oven”是不同的,也很…
word2vec word2vec/glove/swivel binary file on chinese corpus word2vec: https://code.google.com/p/word2vec/ glove: http://nlp.stanford.edu/projects/glove/ swivel: https://github.com/tensorflow/models/tree/master/swivel http://arxiv.org/abs/1602.02215…