python opencv3 圆检测】的更多相关文章

git:https://github.com/linyi0604/Computer-Vision # coding:utf8 import cv2 import numpy as np img_origin = cv2.imread("../data/circle.jpg") img_gray = cv2.cvtColor(img_origin, cv2.COLOR_BGR2GRAY) # 低同滤波进行平滑图像 img = cv2.medianBlur(img_gray, 5) cim…
目录: (一)霍夫圆检测原理 (二)代码实现 (一)霍夫圆检测原理 (二)代码实现 1 #霍夫圆检测 2 import cv2 as cv 3 import numpy as np 4 5 def detect_circles_demo(image): 6 dst = cv.pyrMeanShiftFiltering(image, 10, 100) #边缘保留滤波EPF 7 cimage = cv.cvtColor(dst, cv.COLOR_RGB2GRAY) 8 circles = cv.H…
git:https://github.com/linyi0604/Computer-Vision # coding:utf8 import cv2 import numpy as np # 读入图像 img = cv2.imread("../data/line1.png") # 转为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Canny边缘检测 edges = cv2.Canny(gray, 50, 100) "&q…
git:https://github.com/linyi0604/Computer-Vision # coding:utf8 import cv2 import numpy as np # 创建一个200*200 的黑色空白图像 img = np.zeros((200, 200), dtype=np.uint8) # 在图像的中央位置 放置一个100*100的白色方块 img[50:150, 50: 150] = 255 cv2.imshow("image", img) # 二值化操作…
 Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得…
简介: 1.霍夫圆变换的基本原理和霍夫线变换原理类似,只是点对应的二维极径.极角空间被三维的圆心和半径空间取代.在标准霍夫圆变换中,原图像的边缘图像的任意点对应的经过这个点的所有可能圆在三维空间用圆心和半径这三个参数来表示,其对应一条三维空间的曲线.对于多个边缘点,点越多,这些点对应的三维空间曲线交于一点的数量越多,那么他们经过的共同圆上的点就越多,类似的我们也就可以用同样的阈值的方法来判断一个圆是否被检测到,这就是标准霍夫圆变换的原理, 但也正是在三维空间的计算量大大增加的原因,标准霍夫圆变化…
霍夫直线变换介绍 霍夫圆检测 现实中: example import cv2 as cv import numpy as np # 关于霍夫变换的相关知识可以看看这个博客:https://blog.csdn.net/kbccs/article/details/79641887 def line_detection(image): gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) edges = cv.Canny(gray, 50, 150, apertur…
检测边缘和轮廓不仅重要,还经常用到,它们也是构成其他复杂操作的基础. 直线和形状检测与边缘和轮廓检测有密切的关系. 霍夫hough 变换是直线和形状检测背后的理论基础.霍夫变化是基于极坐标和向量开展的,常规的直线是二维平面直角坐标上建立的 y = kx + b 该直线的参数 k.b 存在有负值,负值则不便于计算(有资料这样撰写的,没有深究,就以此为参考吧),对于极坐标而言,其表达式为 r=x * cosθ + y * sinθ 参数r.θ均可以为正数(极坐标r值永远是大于等于0的数,θ就可以用0…
  用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问题,浏览代码之后,我提供了一些对原始算法的更新和改进. 首先需要留意的是,这个算法并不是对所有条形码有效,但会给你基本的关于应用什么类型的技术的直觉. 假设我们要检测下图中的条形码: 图1:包含条形码的示例图片 现在让我们开始写点代码,新建一个文件,命名为detect_barcode.py,打开并编…
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数很少,也就普通的读取图片,灰度转换,显示图像,简单的编辑图像罢了. 如下: 读取图…