总体思想 1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维 2 然后对降维的特征採用简单的朴素贝叶斯进行分类 算法主要流程 1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负样本)的图像片,然后对他们进行多尺度变换,再通过一个稀疏測量矩阵对多尺度图像特征进行降维,然后通过降维后的特征(包含目标和背景,属二分类问题)去训练朴素贝叶斯分类器(). 2 在t+1帧的时候,我们在上一帧跟踪到的目标位置的周围採样n个扫描窗体(避免去扫描整幅图像),通过相同的稀疏測量矩阵对其降维,…