bzoj3527: [Zjoi2014]力 卷积+FFT】的更多相关文章

先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推了一个多小时终于发现了一个很巧妙的方法,首先问题的关键在于后半个式子,因为显然前半个式子很容易想到卷积的形式,那么直接FFT就好了,但是后半部分不好考虑,一般肯定是通过类似换元的做法化到后来得出结论,到中间有一步就有点难度,那个地方我一直卡.后来突然想到,既然前半部分i<j时那么好处理,那么i>j…
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai​,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j)2ans_i=\sum_{i<j}\frac{a_i}{(i-j)^2}-\sum_{i>j}\frac{a_i}{(i-j)^2}ansi​=∑i<j​(i−j)2ai​​−∑i>j​(i−j)2ai​​ 思路: 考虑分开求减号前后的两组和. 前面的直接是一个卷积的形式,后面的可以…
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过1e-2即可. 输入样例 5 4006373.885184 15375036.435759 1717456.469144 8514941.004912 1410681.345880 输出样例 -16838672.693 3439.793 7509018.566 4595686.886 1090304…
分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑这两个数组: \(a:q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5\) \(b:-\frac{1}{16} \quad -\frac{1}{9} \quad -\frac{1}{4} \quad -\frac{1}{1} \quad 0 \quad \frac{1}{…
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i>j}\frac{q_i}{(i-j)^2}\) \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}\) \(\sum\limits _{i=1}^{j-1} q_i*\frac{1}{(j-i)^2}\) fft都能算出来 \(\sum\limits _{i=j+1}^{n…
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }\] 令\(Ei=Fi/qi\),求\(Ei\). Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 Output n行,第i行输出Ei.与标准答案误差不超过1…
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j}\frac{q_i*q_j}{(i-j)^2}\) \(q_j\)与\(i\)没有半毛钱关系,提到外面去 \(F_j=q_j*\sum_{i<j}\frac{q_i}{(i-j)^2}-q_j*\sum_{i>j}\frac{q_i}{(i-j)^2}\) 左右同时除以\(q_j\) \(E_j=…
3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2003  Solved: 1196 Description 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 Output n行,第i行输出Ei.与标准答案误差不超过1e-2即可. S…
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\limits_{i>j}\frac{q_iq_j}{(i-j)^2}$.求所有的$E_i=\frac{F_i}{q_i}$. 注释:$1\le n\le 10^5$,$0\le q\le 10^9$. 想法:我们可以把$F_i$中每一项上的$q_i$删掉因为我们求得$E_i$除掉了. 进而我们考虑如何求解$F…
[Luogu3338] [BZOJ5327] (DarkBZOJ数据有问题) \(19.3.8\) 前置知识:[知乎-如何通俗易懂地解释卷积] [FFT详解] \(1.\)卷积定义 我们称 \((f*g)(n)\) 为$ f,g$ 的卷积 其连续的定义为: \(\displaystyle (f*g)(n)=\int _{-\infty }^{\infty }f(\tau )g(n-\tau )d\tau \\\) 其离散的定义为: \(\displaystyle (f*g)(n)=\sum _{…