介绍: 在计算机科学中,AVL树是最先发明的自平衡二叉查找树. 在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树. 查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…
一.概述 树其实就是不包含回路的连通无向图.树其实是范畴更广的图的特例. 树是一种数据结构,它是由n(n>=1)个有限节点组成一个具有层次关系的集合. 1.1.树的特性: 每个结点有零个或多个子结点:没有父结点的结点称为根结点:每一个非根结点有且只有一个父结点:除了根结点外,每个子结点可以分为多个不相交的子树: 1)一棵树中的任意两个结点有且仅有唯一的一条路径连通: 2)一棵树如果有nn个结点,则它一定有n−1n−1条边: 3)在一棵树中加一条边将会构成一个回路. 1.2.树的分类 二叉树.二叉…
在上一个专题中,我们在谈论二叉查找树的效率的时候.不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这个想法,平衡二叉树出现了. 平衡二叉树的定义 (AVL—— 发明者为Adel'son-Vel'skii 和 Landis) 平衡二叉查找树,又称 AVL树. 它除了具备二叉查找树的基本特征之外,还具有一个非常重要的特点:它 的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值(平衡因子…
不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这个想法,平衡二叉树出现了. 平衡二叉树的定义 (AVL-- 发明者为Adel'son-Vel'skii 和 Landis) 平衡二叉查找树,又称 AVL树. 它除了具备二叉查找树的基本特征之外,还具有一个非常重要的特点:它 的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值(平衡因子 ) 不超过1. 也就是说AVL树每个节点的平衡因…
MAP,SET,LIST,等JAVA中集合解析(了解) - clam_clam的专栏 - CSDN博---有颜色, http://blog.csdn.net/clam_clam/article/details/6645021JAVA中集合map,set,list详解 - jzhf2012的专栏 - CSDN博客 http://blog.csdn.net/jzhf2012/article/details/8465742Java中Map,List和Set的集合 - 毛毛虫的专栏 - CSDN博客--…
查找.插入和删除在平均和最坏情况下都是O(log n) 增加和删除可能需要通过一次或多次树旋转来重新平衡这个树 节点的平衡因子是它的左子树的高度减去它的右子树的高度.带有平衡因子 1.0 或 -1 的节点被认为是平衡的. 带有平衡因子 -2 或 2 的节点被认为是不平衡的,并需要重新平衡这个树.平衡因子可以直接存储在每个节点中,或从可能存储在节点中的子树高度计算出来. 单向右旋平衡处理LL:由于在*a的左子树根结点的左子树上插入结点,*a的平衡因子由1增至2,致使以*a为根的子树失去平衡,则需进…
复制广义表数据结构中的树 树是数据结构中比较重要也是比较难理解的一类存储结构.本章主要主要围绕二叉树,对树的存储以及遍历做详细的介绍,同时还会涉及到有关树的实际应用,例如构建哈弗曼编码等. 由于树存储结构本身比较复杂,需要有耐心地去搞清楚每一节中的每个知识点,在学习时,建议从每节的问题出发,搞清楚文章的解题思路. 本章内容: . 数据结构中的树存储结构 . 二叉树顺序存储和链式存储的C语言代码实现 . 二叉树前序遍历.中序遍历和后序遍历及C语言递 . 二叉树前序遍历.中序遍历和后序遍历及C语言非…
本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操作在队首(front)进行. 二.ADT 队列ADT(抽象数据类型)一般提供以下接口: ① Queue() 创建队列② enqueue(item) 向队尾插入项③ dequeue() 返回队首的项,并从队列中删除该项④ empty() 判断队列是否为空⑤ size() 返回队列中项的个数 队列操作的…
一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分).划分元素pivot.right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上:然后分别对left和right两个部分进行 递归排序. 其中,划分元素的 选取 直接影响到快速排序算法的效率,通常选择列表的第一个元素或者中间元素或者最后一…
一.概述 链表(linked list)是一组数据项的集合,其中每个数据项都是一个节点的一部分,每个节点还包含指向下一个节点的链接.根据结构的不同,链表可以分为单向链表.单向循环链表.双向链表.双向循环链表等.其中,单向链表和单向循环链表的结构如下图所示: 二.ADT 这里只考虑单向循环链表ADT,其他类型的链表ADT大同小异.单向循环链表ADT(抽象数据类型)一般提供以下接口: ① SinCycLinkedlist() 创建单向循环链表② add(item) 向链表中插入数据项③ remove…