FFT\NTT总结】的更多相关文章

前言.FFT  NTT 算法 网上有很多,这里不再赘述. 模板见我的代码库: FFT:戳我 NTT:戳我 正经向:FFT题目解题思路 \(FFT\)这个玩意不可能直接裸考的..... 其实一般\(FFT\)的题目难点不在于\(FFT\),而在于构造多项式与卷积. 两个经典例题: [ZJOI2014]力 给定序列\(\{ q[1],q[2],....q[n]\}\) 定义:\(Ej = \sum_{i<j} \frac{q[i]}{(i-j)^2} - \sum_{i>j} \frac{q[i]…
目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理, 折半引理与求和引理 重新定义 多项式的表示 快速傅里叶变换FFT 通过 FFT 在单位复数根处插值 FFT的速度优化与迭代实现 炸精现场与 NTT 原根 NTT 任意模数 NTT 卷积状物体与分治 FFT FWT 与位运算卷积 FWT 与 \(\text{or}\) 卷积 FWT 与 \(\te…
FFT/NTT/MTT Tags:数学 作业部落 评论地址 前言 这是网上的优秀博客 并不建议初学者看我的博客,因为我也不是很了解FFT的具体原理 一.概述 两个多项式相乘,不用\(N^2\),通过\(FFT\)可以把复杂度优化到\(O(NlogN)\),\(NTT\)能够取模,\(MTT\)可以对非\(NTT\)模数取模,相对来说\(FFT\)常数小些因为不要取模 二.我们来背板子(FFT) 先放一个板子(洛谷P3803 [模板]多项式乘法(FFT)) #include<iostream>…
FFT&NTT总结 一些概念 \(DFT:\)离散傅里叶变换\(\rightarrow O(n^2)\)计算多项式卷积 \(FFT:\)快速傅里叶变换\(\rightarrow O(nlogn)\)计算多项式卷积 \(NTT:\)快速数论变换\(\rightarrow\)对\(FFT\)的常数优化 \(MTT:\)\(NTT\)的一些拓展 FFT 多项式&卷积 设\(A(x)\)表示一个\(n-1\)次多项式 则\(A(x)=\sum_{i=0}^{n-1}a_ix^i\) 而卷积就是两个…
@(学习笔记)[FFT, NTT] 问题概述 给出两个次数为\(n\)的多项式\(A\)和\(B\), 要求在\(O(n \log n)\)内求出它们的卷积, 即对于结果\(C\)的每一项, 都有\[c_i = \sum_{j = 0}^{n}a_j \cdot b_{i - j}\] 问题求解 大致思路 朴素做法: 考虑按照上面的式子暴力运算, 时间复杂度: \(O(n^2)\) 考虑把多项式化作点值表达, 记\[A(x) =\sum_{i = 0}^n a_i x^i\] 我们把\(A\)和…
@(学习笔记)[FFT, NTT] Problem Description Calculate A * B. Input Each line will contain two integers A and B. Process to end of file. Note: the length of each integer will not exceed 50000. Output For each case, output A * B in one line. Sample Input 1 2…
在学各种数各种反演之前把以前做的$FFT$/$NTT$的题整理一遍 还请数论$dalao$口下留情 T1快速傅立叶之二 题目中要求求出 $c_k=\sum\limits_{i=k}^{n-1}a_i*b_{i-k}$ 首先可以把$a$翻转, $c_k=\sum\limits_{i=k}^{n-1}a_{n-1-i}*b_{i-k}$ $c_k=\sum\limits_{i=0}^{n-k-1}a_{n-k-1-i}*b_{i}$ T2力 $f[i]=\sum_{j=1}^{i-1}\frac{q…
打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <cctype> #include <algorithm> #define rin(i,a,b)…
FFT和NTT真是噩梦呢 既然被FFT和NTT坑够了,坑一下其他的人也未尝不可呢 前置知识 多项式基础知识 矩阵基础知识(之后会一直用矩阵表达) FFT:复数基础知识 NTT:模运算基础知识 单位根介绍 设有一个数a,使得an=1,其中n为满足an=1的最小正整数 满足条件的a有哪些呢? 复数域上的(cos(2π/n)+sin(2π/n)*i)(一般用ωn表示) 模运算中的原根g(mod n+1) 更宽泛地说,只要在一个集合中定义了加法和乘法,而且二者满足: 存在元素“0”,使得加上“0”的结果…
HDU-4609(FFT/NTT) 题意: 给出n个木棒,现从中不重复地选出3根来,求能拼出三角形的概率. 计算合法概率容易出现重复,所以建议计算不合法方案数 枚举选出的最大边是哪条,然后考虑剩下两条边之和小于等于它 两条边之和为\(x\)的方案数可以\(FFT/NTT\)得到,是一个简单的构造 即\(f(x)=\sum x^{length_i}\),求出\(f(x)^2\),就能得到和的方案数,但是会重复,包括自己和自己算,一对算两次 处理一下前缀和即可 #include<bits/stdc+…