信息论随笔3: 交叉熵与TF-IDF模型】的更多相关文章

接上文:信息论随笔2: 交叉熵.相对熵,及上上文:信息论随笔 在读<数学之美>的时候,相关性那一节对TF-IDF模型有这样一句描述:"其实 IDF 的概念就是一个特定条件下.关键词的概率分布的交叉熵(Kullback-Leibler Divergence)": 当时尚不明白,等我看懂交叉熵与相对熵之后,再看TF-IDF,略有所获,本想与上一篇合写在一起的,但越写越多,于是单独成文: 文档的信息量 一篇文档由m个词组成 \( d = (w_{1}, w_{2}, w_{3},…
# coding: utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #print("hello") #载入数据集mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True) #每个批次的大小,训练时一次100张放入神经网络中训练batch…
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.2 交叉熵损失函数 交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息.在信息论中,交叉熵是表示两个概率分布 \(p,q\) 的差异,其中 \(p\) 表示真实分布,\(q\) 表示非真实分布,那么\(H(p,q)\)就称为交叉熵: \[H(p,q)=\sum_i p_i \cdot \l…
1.说在前面 最近在学习object detection的论文,又遇到交叉熵.高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个回顾与总结,特此先简单倒腾了一下博客,使之美观一些,再进行总结.本篇博客先是对交叉熵损失函数进行一个简单的总结. 2. 交叉熵的来源 2.1.信息量 交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起.我们先来看看什么是信息量: 事件A:巴西队进入了2018世界杯决赛圈. 事…
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)以及JS散度,在深度学习以及机器学习很多地方都用的到,尤其是对于目标函数和损失函数的定义.在逻辑回归问题中,目标函数就是用交叉熵定义的. 1. 信息量(熵) 信息论是应用数学的一个分支,主要研究…
FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page Rank).我们今天谈谈如何确定一个网页和某个查询的相关性.了解了这四个方面,一个有一定编程基础的读者应该可以写一个简单的搜索引擎了,比如为您所在的学校或院系建立一个小的搜索引擎.] 我们还是看上回的例子,查找关于“原子能的应用”的网页.我们第一步是在索引中找到包含这三个词的网页(详见关于布尔运算的系…
原文:http://blog.csdn.net/zhangbinfly/article/details/7734118 最近想学习下Lucene ,以前运行的Demo就感觉很神奇,什么原理呢,尤其是查找相似度最高的.最优的结果.索性就直接跳到这个问题看,很多资料都提到了VSM(Vector Space Model)即向量空间模型,根据这个模型可以对搜索的结果进行最优化的筛选,目前还不知道如何证明,只能凭借想象应该是这个样子的. 1.看一下TF/IDF 我们先来看下一个叫TF/IDF的概念,一般它…
TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相关性 TF(Term Frequency): 表示一个term与某个document的相关性.公式为: 这个term在document中出现的次数除以该document中所有term出现的总次数. IDF(Inverse Document Frequency)表示一个term表示document的主…