LCA 各种神奇的LCA优化方法】的更多相关文章

LCA(Least Common Ancestors) 树上问题的一种. 朴素lca很简单啦,我就不多说了,时间复杂度n^2 1.倍增LCA 时间复杂度 nlongn+klogn 其实是一种基于朴素lca的优化方法, 朴素lca只能一层层的向上查询,而这个有一定状态压缩的想法 即每一次跳2^i层,让O(n)的查找变成O(logn). 以上就是我对倍增lca的理解. 以洛谷P3128为例, [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed…
在上一篇<为什么房间的 Wi-Fi 信号这么差>中,猫哥从微波炉.相对论.人存原理出发,介绍了影响 Wi-Fi 信号强弱的几大因素,接下来猫哥再给大家介绍几种不用升级带宽套餐也能提升网速的路由器优化方法. 防蹭网 开启 UPnP QoS 与网络限速 设置正确的 MTU 值 使用路由器交换机模式 使用无线中继扩展 Wi-Fi 信号 1.防蹭网 这是最最首要的一条:确认没有陌生人在蹭网! 被蹭网意味着你的 Wi-Fi 密码被泄露(看看是不是不小心用万能钥匙把自家 Wi-Fi 共享出去了?),或者你…
php-fpm优化方法 php-fpm存在两种方式,一种是直接开启指定数量的php-fpm进程,不再增加或者减少:另一种则是开始时开启一定数量的php-fpm进程,当请求量变大时,动态的增加php-fpm进程数到上限,当空闲时自动释放空闲的进程数到一个下限.这两种不同的执行方式,可以根据服务器的实际需求来进行调整. 要用到的一些参数,分别是pm.pm.max_children.pm.start_servers.pm.min_spare_servers和pm.max_spare_servers.…
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描, Sql 代码 : select id from t where num is null; 可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询: Sql 代码 : select id from t where num=0; 3.应尽量避免在 wh…
Android中的ListView应该算是布局中几种最常用的组件之一了,使用也十分方便,下面将介绍ListView几种比较常见的优化方法: 首先我们给出一个没有任何优化的Listview的Adapter类,我们这里都继承自BaseAdapter,这里我们使用一个包含100个字符串的List集合来作为ListView的项目所要显示的内容,每一个条目都是一个自定义的组件,这个组件中只包含一个textview: Activity: package com.alexchen.listviewoptimi…
原文地址:https://www.douban.com/note/315222037/ 背景最近将Wordpress迁移至阿里云.由于自己的服务器是云服务器,硬盘和内存都比较小,所以内存经常不够使,通过Linux命令查看后,发现启动php-fpm进程数有20多个,占用了将近1G的内存,整个服务器才1.5G的内存,最后通过对php-fpm进程数优化解决了此问题,服务器多节省出600M的内存,将php-fpm的优化方法和大家分享下.备注:目前根据nginx.fpm-php进行了内存优化,详情见相关资…
DevExpress ChartControl加载大数据量数据时的性能优化方法有哪些? 关于图表优化,可从以下几个方面解决: 1.关闭不需要的可视化的元素(如LineMarkers, Labels等): Series.View.LineMarkerOptions.Visible =false. 2. 关闭图表的滚动与缩放功能,手动调整范围,这样将大大减少所需计算的个数. 3. 将 ChartControl.RefreshDataOnRepaint属性设为false 4. 将 ChartContr…
Tomcat有很多方面,从内存.并发.缓存四个方面介绍优化方法.   一.Tomcat内存优化 Tomcat内存优化主要是对 tomcat 启动参数优化,我们可以在 tomcat 的启动脚本 catalina.sh 中设置 java_OPTS 参数. JAVA_OPTS参数说明 -server 启用jdk 的 server 版: -Xms Java虚拟机初始化时的最小内存: -Xmx java虚拟机可使用的最大内存: -XX: PermSize 内存永久保留区域 -XX:MaxPermSize…
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);}.main-container {…
上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad"), Adam (type: "Adam"), Nesterov’s Accelerated Gradient (type: "Nesterov&qu…