3812: 主旋律 题意:一张有向图,求它的生成子图是强连通图的个数.\(n \le 15\) 先说一个比较暴力的做法. 终于知道n个点图的是DAG的生成子图个数怎么求了. 暴力枚举哪些点是一个scc,然后缩点,枚举入度为0的点,容斥原理dp DAG个数 \[ d(S) = \sum_{T \subset S, T \neq \varnothing}(-1)^{\mid T\mid-1}2^{w(T,S-T)}d(S-T) \] 巧妙的做法是直接枚举缩点入度为0的点(即那些scc有哪些点) \(…
题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵. 输入 输入第一行包含两个整数n和m(1<=n<=4, 1<=m<=7),即行数和列数.以下n行每行m个字符,其中“X”表示局部极小值,“.”表示非局部极小值. 输出 输出仅一行,为可能的矩阵总数除以12345678的余数. 样例输入 3 2 X. .. .…
这题太难了...看了30篇题解才整明白到底咋回事... 核心思想:状压dp+搜索+容斥 首先我们分析一下,对于一个4*7的棋盘,低点的个数至多只有8个(可以数一数) 这样的话,我们可以进行一个状压,把所有的低点压进来 然后我们从小到大枚举所有数,转移即可 记状态f[i][j]表示到了第i个数,低点的状态为j的方案数 那么在转移的时候,有两个转移方向: ①.如果第i个数放在低点上,那么我们可以枚举所有的低点k,如果低点没有在状态里,有: dp[i][j|(1<<k)]+=dp[i-1][j] ②…
状压DP :F(S)=Sum*F(S)+p(x1)*F(S^(1<<x1))+p(x2)*F(S^(1<<x2))...+1; F(S)表示取状态为S的牌的期望次数,Sum表示什么都不取得概率,p(x1)表示的是取x1的概率,最后要加一因为有又多拿了一次.整理一下就可以了. #include <cstdio> ; <<Maxn],p[Maxn]; int n; int main() { while (scanf("%d",&n)!…
(Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户. 2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 915 Solved: 603 [Submit][Status][Discuss] Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳…
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3112  Solved: 1816[Submit][Status][Discuss] Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K &…
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;   #define b(x) (1 &l…
状压dp.... 我已开始用递归结果就 TLE 了... 不科学啊...我dp基本上都是用递归的..我只好改成递推 , 刷表法 将全部公司用二进制表示 , 压成一个数 . 0 表示破产 , 1 表示没破产 . dp( S ) 表示 S 状态是否能够达到 , 能为 1 ( true ) , 不能为 0 ( false ) . dp( S ) =  max( dp( S ^ { x } ) , ( S & x == 0 && ∑debt > 0 ) ---------------…
早上这道题没调完就去玩NOI网络同步赛了.... 状压dp , dp( s ) 表示 s 状态下所用的最短时间 , 转移就直接暴力枚举子集 . 可以先预处理出每个状态下的重量和时间的信息 . 复杂度是 O( 2^n + 3^n ) 可以过 ---------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm&g…
首先只有一份图时显然可以状压dp,即f[S][i]表示S子集的哈密顿路以i为终点的方案数,枚举下个点转移. 考虑容斥,我们枚举至少有多少条原图中存在的边(即不合法边)被选进了哈密顿路,统计出这个情况下的哈密顿路数量就可以容斥了. 考虑暴力,显然是枚举在每张图中选择了哪些不合法边.注意到当固定了某些边被选择后,可以将这些边两端的点缩掉,缩完点之后因为已经进行了容斥,可以假装这是个完全图,哈密顿路径数量显然就是剩余点数的阶乘了,于是只需要考虑选择边的方案数. 先考虑在一张图中选择边的方案数.之前已经…