应该是最后一道紫色的概率了....然而颜色啥也代表不了.... 首先看懂题意: 你现在有$p$点体力,你的体力上限为$n$ 在一轮中, 1.如果你的体力没有满,你有$\frac{1}{m + 1}$的几率回复一点体力 2.紧接着有$k$轮攻击,每轮攻击都有$\frac{1}{m + 1}$的几率使你掉一点体力 如果一轮后,你的体力$ \leq 0$,那么游戏结束 询问游戏结束的期望轮数 看懂题应该就懂了什么吧.... 设状态$f[i]$表示生命值为$i$游戏结束的期望轮数 那么 $$f[i] =…
https://blog.csdn.net/xyz32768/article/details/83217209 不难找到DP方程与辅助DP方程,发现DP方程具有后效性,于是高斯消元即可. 但朴素消元显然无法通过,注意到f[i]的方程至多与f[i+1]有关,于是从下往上依次消去最后一个数,剩下的就是一个下三角,直接求解即可. 注意中间与指数有关的计算能预处理的就不用快速幂,以及阶乘等值可以在程序开头预处理. 复杂度$O(n^2)$,不知道为什么和别人的代码相比常数巨大. #include<cstd…
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的概率\(P_{ei}\).用\(dgr[i]\)表示点\(i\)的度数,那么\[P_{ei}=\frac{P_u}{dgr[u]}+\frac{P_v}{dgr[v]}\] 每个点的概率怎么求呢?就是\[P_i=\sum_{(i,j)\in G}\frac{P_j}{dgr[j]}\] 用\(a[i][j…
题面 题解:因为异或不太好处理,,,因此按位来算,这样最后的答案就是每一位上的值乘对应的权值再求和.本着期望要倒退的原则,,,我们设$f[i]$表示从$i$到$n$,xor和为1的概率.那么观察$xor$的规则:1 xor 1 = 00 xor 1 = 1 ----> 当xor 1时,结果为1的概率 = 原本为0的概率1 xor 0 = 1 0 xor 0 = 0 ----> 当xor 0时,结果为1的概率 = 原本为1的概率因此我们有如下转移:$$f[x] = \frac{1}{d_{x}}…
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对另个点的贡献,得到方程组,暴力高斯消元 注意走到最后一个点就结束了,所以相当于它不能有出边 #include <bits/stdc++.h> #define eps 1e-6 using namespace std; const int N = 1005; double a[N][N]; int…
考虑40分. 设出状态 f[i]表示匹配到了i位还有多少期望长度能停止.可以发现这个状态有环 需要高斯消元. 提供一种比较简单的方法:由于期望的线性可加性 可以设状态f[i]表示由匹配到i到匹配到i+1需要的期望长度. 需要预处理前缀和和KMP的nex数组来辅助转移. if(n==1) { gc(a); len=strlen(a+1); ll j=0; memset(nex,0,sizeof(nex)); rep(2,len,i) { while(j&&a[i]!=a[j+1])j=nex…
容易想到的做法是建出AC自动机,高斯消元.然而自动机上节点数量是nm的. 注意到我们要求的变量只有n个,考虑将其他不用求的节点合并为一个变量.这个变量即表示随机生成一个串,其不包含任何一个模板串的概率. 现在即有n+1个变量,考虑列出n+1个方程.设pi表示第i个人胜利的概率,显然有Σpi=1.然后对每个pi列一个方程,即考虑其胜利概率.在无胜利者的随机串后面接上这个串,这样这个人有可能成为胜利者,但也有可能之前的随机串加上这个串的一段前缀后已经包含了另一个串(可能是其自身),需要减掉这一部分.…
题意: 给个有向图,每个节点等概率转移到它的后继节点,现在问一些节点的期望访问次数; 思路: 对于一个点v,Ev=Ea/d[a]+Eb/d[b]+Ec/d[c];a,b,c是v的前驱节点; 然后按这个列出方程,进行高斯约旦消元,然后判断是否可达和是否为0; 代码是白书上的; AC代码: #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include…
首先,题目中的无向简单连通图代表着没有自环,重边... 总分的期望 = 每条边的期望之和...................每条边的期望又可以拆成$u \to v$的期望和$v \to u$的期望 记$f[i]$表示$1 \to n$的路径中,$i$的期望经过次数 而$u \to v$的期望只要知道$f[u], f[v]$就可以求出 注意到,$f[i]$为每个时刻点在$i$的概率之和,即$\sum\limits_{t =0}^{\infty} p^i_t$ 那么,我们有$f[i] = \sum…
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解]显然,应使经过次数越多的边编号越小,问题转化为求每条边的期望经过次数. 边数太多,容易知道f(u,v)=f(u)/out(u)+f(v)/out(v),所以转化为求每个点的期望经过次数,这就是驱逐猪猡了. 设f[x]表示点x的期望经过次数,根据全期望公式(讨论“经过“的问题不能依赖于下一步): $$f[x…
3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status][Discuss] Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分…
概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到前面或后面,那么概率dp没法递推,只能高斯消元 设期望E(x),首先100这个位置的期望E(100)=0,然后可以找出方程, 对于传送点,E(x)=E(go(x)),对于非传送点,E(x)=(E(x+1)+E(x+2)+E(x+3)+E(x+4)+E(x+5)+E(x+6)+6)/cnt(cnt是可…
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两个不同端点A_j和B_j (1 <= A_j<= N; 1 <= B_j <= N)表示的双向道路连接.保证城市1至少连接一个其它的城市.一开始臭气弹会被放在城市1.每个小时(包括第一个小时),它有…
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不满足期望的线性,所以考虑拆位. 对于每一个二进制位,经过边权为0仍是x,经过边权为1变成1-x(转化成减法才满足期望的线性). 设f[x]表示点x到n的路径xor期望,f[n]=0,根据全期望公式: $$f[i]=\sum_{j}\frac{f[j]}{out[i]}\ \ , \ \ w(i,j)=0$$…
题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两个不同端点A_j和B_j (1 <= A_j<= N; 1 <= B_j <= N)表示的双向道路连接.保证城市1至少连接一个其它的城市.一开始臭气弹会被放在城市1.每个小时(包括第一个小时),它有P/Q (1 <= P <=1,000,000; 1 <= Q <…
BZOJ3270 博物館 概率DP 高斯消元 @(XSY)[概率DP, 高斯消元] Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一间房间到任何一间别的房间. 两个人在博物馆里逛了一会儿后两人决定分头行动,去看各自感兴趣的艺术品.他们约定在下午六点到一间房间会合.然而他们忘记了一件重要的事:他们并没有选好在哪儿碰面.等时间到六点,他们开始在博物馆…
和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解. #include <bits/stdc++.h> #define N 23 #define setIO(s) freopen(s".in","r",stdin) using namespace std; double in[N],out[N],f[N*N][N*N]; int G[N][N],deg[N],idx[N][N],tot; void Gauss(int n) { int i,j…
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和.现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. Input 第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边. 输入保…
题目描述 传送门 分析 首先判掉 \(INF\) 的情况 第一种情况就是不能从 \(s\) 走到 \(t\) 第二种情况就是从 \(s\) 出发走到了出度为 \(0\) 的点,这样就再也走不到 \(t\) 然后我们去考虑 \(60\) 分的做法 我们设 \(dp[u]\) 为当前在点 \(u\) 走到点 \(t\) 的期望步数 那么就有 \(dp[u]=\sum_{u->v}^v((dp[v]+1) \times \frac{1}{rd[u]})\) 移项之后就变成了 \(dp[u]-\sum_…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4418 题意:简单来说就是给你1个环(n - 1 , n - 2 …… 0 ,1 , 2 , 3 …… n - 2).你可以走1 - m步每步的概率是给定的..保证sum(pk)(1 <= k <= m)的和是100,问你从x开始给你一个初始方向走到y的期望步数是多少.d = 0 代表从0 ->n - 1 ,d = 1代表从n - 1 -> 0. 由于这里同一个点每次转移的方向是不一样的…
题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且可能性一样),掷多少走多少,目的地超出100重掷,问你走到100所需掷骰子的期望. 思路:概率DP肯定的,但是会往前传送就很难直接算.用DP[i]代表从i走到100的期望. 那么如果i没有传送阵,则有:DP[i] = 1 / 6 * sum(DP[i + j]) + 1,1<= j <= 6,如果…
题意:给定一个 n 个结点的有向图,然后从 1 结点出发,从每个结点向每个后继结点的概率是相同的,当走到一个没有后继结点后,那么程序终止,然后问你经过每个结点的期望是次数是多少. 析:假设 i 结点的出度为 di,期望执行次数为 xi,对于一个有 n 个前继结点的 a1, a2, a3 ... an 的结点 i,可以列出方程 xi = xa1/da1 + xa2/da2 + .. + xan/dan,根据每个结点都可以列出一个方程,然后就有 n 个方程,其中结点 1 比较特殊,因为是由它开始的所…
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = (w = 1) \frac{1 - f[to]}{deg[i]} +(w = 0) \frac{f[to]}{deg[i]} \] 高斯消元解一下 注意:f[n] = 0,有重边! #include<bits/stdc++.h> using namespace std; const int MA…
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. 总分的期望值=每条边的期望经过次数*边的编号 之和. 不论我们如何编号,每条边的期望经过次数是不会变的,要使得边权和的期望最小,只需要贪心地使期望次数和边权倒序对应即可.…
深夜肝题...有害身心健康QAQ 设f[i]为到达i的概率,d[i]为i的度数. 因为无限久之后炸弹爆炸的概率是1,所以最后在i点爆炸的概率实际上就是f[i]/sigma(f[]) 列出方程组 f[i]=sigma(f[to]*(1-p/q)/d[to]+[i==1]*(1-p/q)) 然后就可以高斯消元了 高斯消元的方法:自己的那一位是1,to的每一位上为-(1-p/q)/d[to],n+1位上为0,这样就相当于x减去所有to为0.1的n+1上为1-p/q,因为炸弹还可能在自己这里不跑. 这题…
[BZOJ4820][Sdoi2017]硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了.同学们觉得要加强趣味性,所以要找一个同学扔很多很多次硬币,其他同学记录下正反面情况.用H表示正面朝上,用T表示反面朝上,扔很多次硬币后,会得到一个硬币序列.比如HTT表示第一次正面朝上,后两次反面朝上.但扔到什么时候停止呢?大家提议,选出n个同学,每个同学猜一个长度为m的序列,当某…
[BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但是由于他的疏忽DZY偷走了他的小苹果!没有小苹果怎么听歌!他发现邪恶的DZY把他的小苹果藏在了一个迷宫里.JC在经历了之前的战斗后他还剩下hp点血.开始JC在1号点,他的小苹果在N号点.DZY在一些点里放了怪兽.当JC每次遇到位置在i的怪兽时他会损失Ai点血.当JC的血小于等于0时他就会被自动弹出迷…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143 只需算出每条边被经过的概率,将概率从小到大排序,从大到小编号,就可得到最小期望: 每条边经过的概率是其两端的点被走的次数/该点的度数的和: 而每个点被走的次数又需要从与其相连的点推过来,所以构成n个n元方程,进行高斯消元求解: 其中点n较为特殊,可以不去管它,因为所有路径到n后就不再走出来,也就是n到n的概率为0: 而因为所有路径从点1开始,所以1的次数平地+1. 代码如下: #in…
Time Limit: 30 Sec  Memory Limit: 128 MB 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一间房间到任何一间别的房间. 两个人在博物馆里逛了一会儿后两人决定分头行动,去看各自感兴趣的艺术品.他们约定在下午六点到一间房间会合.然而他们忘记了一件重要的事:他们并没有选好在哪儿碰面.等时间到六点,他们开始在博物馆里到处乱跑来找到对方(他们…
题目传送门 题意:在n*m的网格上,有一个机器人从(x,y)出发,每次等概率的向右.向左.向下走一步或者留在原地,在最左边时不能向右走,最右边时不能像左走.问走到最后一行的期望. 思路:显然倒着算期望. 我们考虑既不是最后一行,也不靠边的一般方格,设$f[i][j]$为(i,j)这个格子的期望步数,显然有 $f[i][j]=\frac{1}{4}*(f[i][j-1]+f[i][j+1]+f[i+1][j]+f[i][j])+1$ 移项有:$f[i][j]=\frac{1}{3}(f[i][j-…