既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有点贵,所以能听到哪儿算哪儿吧... Week one主要讲了近年来为啥Deep learning火起来了,有时间另起一贴总结一下. Week two回顾了Logistic Regression(逻辑回归).虽然它听上去已经不是一个陌生的概念了,但是每次想起时还是会迟疑一下,所以干脆记录一发备忘. 1. 逻辑回…
参考自: http://blog.sina.com.cn/s/blog_74cf26810100ypzf.html http://blog.sina.com.cn/s/blog_64ecfc2f0101ranp.html ---------------------------------------------------------------------- Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可…
分类是机器学习的一个基本问题, 基本原则就是将某个待分类的事情根据其不同特征划分为两类. Email: 垃圾邮件/正常邮件 肿瘤: 良性/恶性 蔬菜: 有机/普通 对于分类问题, 其结果 y∈{0,1}, 即只有正类或负类. 对于预测蔬菜是否为有机这件事, y = 0表示蔬菜为普通, y= 1表示蔬菜为有机. 逻辑回归是分类问题中的一个基本算法, 它的猜想函数hθ(x) = g(θT*x) 其中, g(z) = 1 / (1+e-z), 该函数称为sigmoid函数或logistic函数, 是一…
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 上一篇讲解了Logistic Regression的基础知识,感觉有很多知识没说清楚,自己理解的也不透彻,好在coursera上NG又从另外的角度讲了一下.这里我权当个搬运工,把他讲的搬过来,加上自己的理解整理一下.主要分成三个部分:对的再理解.Decision Boundary(决策边界).多类问题. 1 对的再理解 这部分采用启发式的方式来讲解,循序渐进的在跟…
1.Logistic回归的本质 逻辑回归是假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度上升/下降法来求解参数,从而实现数据的二分类. 1.1.逻辑回归的基本假设 ①伯努利分布:以抛硬币为例,每次试验中出现正面的概率为P,那么出现负面的概率为1-P.那么如果假设hθ(x)为样本为正的概率,1-hθ(x)为样本为负的概率. 那么模型为hθ(x:θ)=P,并假设概率函数为Sigmoid函数 ②Sigmoid函数 1.2.逻辑回归的损失函数 逻辑回归的损失是它的极大似然函数 1.3.逻辑回归…
逻辑回归主要用于解决分类问题,在现实中有更多的运用, 正常邮件or垃圾邮件 车or行人 涨价or不涨价 用我们EE的例子就是: 高电平or低电平 同时逻辑回归也是后面神经网络到深度学习的基础. (原来编辑器就有分割线的功能啊……) 一.Logistic Function(逻辑方程) 同线性回归,我们会有一个Hypothesis Function对输入数据进行计算已得到一个输出值. 考虑到分类问题的特点,常用的函数有sigmoid方程(又叫logistic方程) 其函数图像如下 可见: 1.输出区…
课上习题 [1]线性回归 Answer: D A 特征缩放不起作用,B for all 不对,C zero error不对 [2]概率 Answer:A [3]预测图形 Answer:A 5 - x1 ≥ 0时,y = 1.即x1 ≤ 5时,y = 1 [4]凸函数 [5]代价函数 Answer:ABD 任何情况下都是 预测对时 cost为0,反之为正无穷 [6]代价函数 [7]向量化 Answer:A [8]高级优化算法 Answer:C [9]多分类 测验 AB Answer:BE 当有一个…
Lecture6 Logistic Regression 逻辑回归 6.1 分类问题 Classification6.2 假设表示 Hypothesis Representation6.3 决策边界 Decision Boundary6.4 代价函数 Cost Function6.5 简化的代价函数和梯度下降 Simplified Cost Function and Gradient Descent6.6 高级优化 Advanced Optimization6.7 多类别分类:一对多  Mult…
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好. 数学上,ElasticNet被定义为L1和L2正则化项的凸组合: 通过适当设置α,ElasticNet包含L1和L2正则化作为特殊情况.例如,如果用参数α设置为1来训练线性回归模型,则其等价于Lasso模型.另一方面,如果α被设置为0,则训练的模型简化为ridge回归模型.…
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_variance_score) 4 中值绝对误差(Median absolute error) 5 R2 决定系数(拟合优度) 模型越好:r2→1 模型越差:r2→0 二 逻辑斯蒂回归 1 概述 在逻辑斯蒂回归中,我们将会采用sigmoid函数作为激励函数,所以它被称为sigmoid回归或对数几率回归…