数学图形(2.26) 3D曲线结】的更多相关文章

我收集的几种曲线结 knot(huit) #http://www.mathcurve.com/courbes3d/noeuds/noeudenhuit.shtml vertices = 1000 t = from 0 to (80*PI) x = sin(t) y = sin(t)*cos(t)/2 z = sin(2*t)*sin(t/2) / 4 r = 10; x = x*r y = y*r z = z*r knot(Paul Bourke) #http://www.mathcurve.c…
像瓜子样的曲线 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/courbes2d/clairaut/clairaut.shtml vertices = t = to (*PI) r = n = rand2() p = r*pow(sin(t), n) x = p*cos(t) y = p*sin(t) 面: vertices = D1: D2: u = to (*PI…
这一节主要是发布我自己写的3D曲线, (1)立体flower线圈 vertices = a = 10.1 b = 3.1 s = (a + b) / b o = i = to (**PI) j = mod(i, *PI) k = mod(s*i, *PI) m = a*sin(j) n = a*cos(j) x = m + o*sin(k) y = n z = o*cos(k) (2)乱 vertices = t = *PI) r = a = rand2(PI*0.1, PI*0.9) s =…
昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroid (meaning 'kidney shaped') was used for the two-cusped epicycloid by Proctor in 1878. The nephroid is the epicycloid formed by a circle of radius a r…
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 Sin曲线 vertices = x = *PI) to (*PI) y = sin(x) 震荡sin曲线 vertices = x = *PI) to (*PI) y = exp(abs(x)/)*sin(x) 极限震荡sin曲线 vertices = x = ) to y = x*sin(/x) x = x* y = y* SIN曲线的变异 #http://www.ma…
通过这种曲线可以看到一种由8到0的过度 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/courbes2d/cassini/cassini.shtml vertices = t = from (-PI) to (PI) a = b = rand2(, *a) e = b/a; p = a*sqrt(cos(*t) + sqrt(e^ - sin(*t)^)) x = p…
它也算是一种螺线吧 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/courbes2d/cochleoid/cochleoid.shtml vertices = t = *PI) to (*PI) a = x = a*sin(t)/t y = a*( - cos(t))/t…
维维亚尼(Viviani , Vincenzo)意大利数学家.1622年4月5日生于托斯卡纳大区佛罗伦萨:1703年9月22日卒于佛罗伦萨. 这是一个圆柱与一个球相交而生成的曲线. #http://www.mathcurve.com/courbes3d/viviani/viviani.shtml vertices = u = to (*PI) r = x = r*cos(u)*cos(u) y = r*cos(u)*sin(u) z = r*sin(u) 有随机变量的代码: vertices =…
这也是一种贴在球上的曲线 #http://www.mathcurve.com/courbes3d/loxodromie/sphereloxodromie.shtml vertices = 1000 t = from (-PI*0.5) to (PI*0.5) k = rand2(0, 2*PI) r = 10 x = r*cos(t)/ch(k*t) y = r*sin(t)/ch(k*t) z = r*th(k*t) 这个曲线看上去很普通,不过将上述代码中的k改为一个维度输入: vertice…
上一节讲的三叶结,举一反三,由三可到无穷,这一节讲N叶结 再次看下三叶结的公式: x = sin(t) + 2*sin(2*t)y = cos(t) - 2*cos(2*t) 将其改为: x = sin(t) + 2*sin((n-1)*t)y = cos(t) - 2*cos((n-1)*t) 就变成了N叶结了,如此简单. N叶结: vertices = t = to (*PI) n = rand_int2(, ) x = sin(t) + *sin(n*t - t) y = cos(t) -…