Pytorch中的norm跟Numpy中的norm对比】的更多相关文章

1. PIL image转换成array img = np.asarray(image) 需要注意的是,如果出现read-only错误,并不是转换的错误,一般是你读取的图片的时候,默认选择的是"r","rb"模式有关. 修正的办法: 手动修改图片的读取状态 img.flags.writeable = True # 将数组改为读写模式 2. array转换成image Image.fromarray(np.uint8(img)) 参考资料: http://stacko…
Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array.所以matrix 拥有array的所有特性. 在numpy中matrix的主要优势是:相对简单的乘法运算符号.例如,a和b是两个matrices,那么a*b,就是矩阵积.而不用np.dot().如: import numpy as np a=np.mat('4 3; 2 1') b=np.mat(…
转载自:(pytorch中tensor数据和numpy数据转换中注意的一个问题)[https://blog.csdn.net/nihate/article/details/82791277] 在pytorch中,把numpy.array数据转换到张量tensor数据的常用函数是torch.from_numpy(array)或者torch.Tensor(array),第一种函数更常用.下面通过代码看一下区别: import numpy as np import torch a=np.arange(…
pytorch网络输入图像的格式为(C, H, W),而numpy中的图像的shape为(H,W,C) 所以一般需要变换通道,将numpy中的shape变换为torch中的shape. 方法如下: # A是numpy数据类型A = A.transpose(0,1,2) # 没有改变:(h,w,c) A = A.transpose(2,0,1) # 转换为:(c,h,w) 这样就可以直接输入到torch的网络中了.…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
一.matrix特殊属性解释 numpy中matrix有下列的特殊属性,使得矩阵计算更加容易 摘自 NumPy Reference Release 1.8.1 1.1 The N-dimensional array (ndarray) An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. 摘自 NumPy Reference Release 1.9.1…
 在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就需要对数据进行变换,切片,来生成自己需要的数据形式. 对于一维数组来说,python原生的list和numpy的array的切片操作都是相同的.无非是记住一个规则arr_name[start: end: step],就可以了. 实例: 下面是几个特殊的例子: [:]表示复制源列表 负的index表示,从后往…
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法. Meshgrid函数的基本用法 在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度.可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格.用法: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x)与[X,Y]=meshg…
[开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针对二维矩阵操作axis,当axis为0时,计算方向时列,当axis为1时计算方向为行. 但是这样的描述并不能让我们真正理解axis的含义.下面我一个三维Array,来带领大家深入理解axis 2.实战讲解 >>> import numpy as np >>> arrays…