Pytorch 实现 GAN 网络】的更多相关文章

我最近在学使用Pytorch写GAN代码,发现有些代码在训练部分细节有略微不同,其中有的人用到了detach()函数截断梯度流,有的人没用detch(),取而代之的是在损失函数在反向传播过程中将backward(retain_graph=True),本文通过两个 gan 的代码,介绍它们的作用,并分析,不同的更新策略对程序效率的影响. 这两个 GAN 的实现中,有两种不同的训练策略: 先训练判别器(discriminator),再训练生成器(generator),这是原始论文Generative…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake的就是tf.zeros. 网络具体形状大体如上,具体数值有所调整,生成器过程为:噪声向量-全连接-卷积-卷积-卷积,辨别器过程:图片-卷积-卷积-全连接-全连接. 和预想的不同,实际上数据在生成器中并不是从无到有由小变大的过程,而是由3136(56*56)经过正常卷积步骤下降为28*28的过程. 实…
『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 上篇是一个尝试生成minist手写体数据的简单GAN网络,之前有介绍过,图片维度是28*28*1,生成器的上采样使用的是tf.image.resize_image(),不太正规,不过其他部分很标准,值得参考学习. 辨别器: n,28,28,1    :卷积 + 激活 + 池化 n,14,14,32  :卷积 + 激活 + 池化 n,7,7,64     :reshape n,7*7*64    :全连接 + 激活 n,…
GAN网络的整体公式: 公式各参数介绍如下: X是真实地图片,而对应的标签是1. G(Z)是通过给定的噪声Z,生成图片(实际上是通过给定的Z生成一个tensor),对应的标签是0. D是一个二分类网络,对于给定的图片判别真假. D和G的参数更新方式: D通过输入的真假图片,通过BCE(二分类交叉熵)更新自己的参数. D对G(Z)生成的标签L,G尽可能使L为true,也就是1,通过BCE(二分类交叉熵)更新自己的参数. 公式演变: 对于G来说要使D无法判别自己生成的图片是假的,故而要使G(Z)越大…
原文地址Count Bayesie 这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释得非常清晰易懂,建议阅读 相对熵,又称KL散度( Kullback–Leibler divergence),是描述两个概率分布P和Q差异的一种方法.它是非对称的,这意味着D(P||Q) ≠ D(Q||P). KL散度的计算 衡量近似分布带来的信息损失. KL散度的计算公式其实是熵计算公式的简单变形,…
PyTorch对ResNet网络的实现解析 1.首先导入需要使用的包 import torch.nn as nn import torch.utils.model_zoo as model_zoo # 默认的resnet网络,已预训练 model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/mo…
GAN网络进行图片增强 基于Tensorflow框架 调用ModifyPictureSize.py文件 代码如下: from skimage import io,transform,color import numpy as np ​ def convert_gray(f,**args): """ 将彩色图片转换为灰度图片和调整大小,改变图像分辨率 :return: """ rgb = io.imread(f) gray = color.rgb2…
常见的GAN网络的相关原理及推导 在上一篇中我们给大家介绍了GAN的相关原理和推导,GAN是VAE的后一半,再加上一个鉴别网络.这样而导致了完全不同的训练方式. GAN,生成对抗网络,主要有两部分构成:生成器,判别器. 生成器网络的主要工作是负责生成样本数据,输入的是高斯白噪声z,输出的是样本数据向量x: 判别器网络的主要工作是负责检测样本的数据增加,输入真实或者生成的样本数据,输出样本的标签: 由于生成器和判别器都是需要经过网络进行训练的,所以两者都要能够微分. 生成对抗网络的工作方式是让第一…
GAN网络从入门教程(一)之GAN网络介绍 稍微的开一个新坑,同样也是入门教程(因此教程的内容不会是从入门到精通,而是从入门到入土).主要是为了完成数据挖掘的课程设计,然后就把挖掘榔头挖到了GAN网络这里来了.当然,我也是新手上路,如有任何问题,欢迎在评论区留言. 生成式对抗网络是20年来机器学习领域最酷的想法. --Yann LeCun GAN网络概要 GAN网络全称generative adversarial network,翻译为生成式对抗网络,是一种机器学习方法.由Ian J. Good…