首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
PyTorch 的 Autograd
】的更多相关文章
[源码解析] PyTorch 分布式 Autograd (1) ---- 设计
[源码解析] PyTorch 分布式 Autograd (1) ---- 设计 目录 [源码解析] PyTorch 分布式 Autograd (1) ---- 设计 0x00 摘要 0x01 分布式RPC框架 1.1 RPC 框架 1.2 PyTorch RPC 四大支柱 1.3 RRef 1.3.1 假设条件 1.3.2 同步调用 1.3.2 异步调用 0x02 示例 0x03 前向传播期间的 Autograd 记录 0x04 分布式 Autograd 上下文 0x05 分布式反向传播 5.1…
[源码解析] PyTorch 分布式 Autograd (2) ---- RPC基础
[源码解析] PyTorch 分布式 Autograd (2) ---- RPC基础 目录 [源码解析] PyTorch 分布式 Autograd (2) ---- RPC基础 0x00 摘要 0x01 示例 0x02 RPC 基础 2.1 初始化 2.1.1 初始化后端 2.1.2 生成代理 2.1.3 设置代理 2.1.4 静态类变量 2.2 RPC 代理 2.2.1 RpcAgent 2.2.2 ProcessGroupAgent 2.2.3 TensorPipeAgent 2.2.4 回…
[源码解析] PyTorch 分布式 Autograd (3) ---- 上下文相关
[源码解析] PyTorch 分布式 Autograd (3) ---- 上下文相关 0x00 摘要 我们已经知道 dist.autograd 如何发送和接受消息,本文再来看看如何其他支撑部分,就是如何把发送接受两个动作协调起来,如何确定每个发送/接受节点,如何确定每一个消息交互Session. 通过本文大家可以了解:AutogradMetadata 用来在不同节点间传递 autograd 元信息,DistAutogradContext 代表一个分布式autograd 相关信息,DistAuto…
[源码解析] PyTorch 分布式 Autograd (4) ---- 如何切入引擎
[源码解析] PyTorch 分布式 Autograd (4) ---- 如何切入引擎 目录 [源码解析] PyTorch 分布式 Autograd (4) ---- 如何切入引擎 0x00 摘要 0x01 前文回忆 0x02 计算图 2.1 普通示例 2.2 分布式示例 2.3 分布式注释版 0x03 反向传播 3.1 发起反向传播 3.1.1 外部主动发起 3.1.1.1 示例 3.1.1.2 C++世界 3.1.2 内部隐式发起 3.1.2.1 BACKWARD_AUTOGRAD_REQ…
[源码解析] PyTorch 分布式 Autograd (5) ---- 引擎(上)
[源码解析] PyTorch 分布式 Autograd (5) ---- 引擎(上) 目录 [源码解析] PyTorch 分布式 Autograd (5) ---- 引擎(上) 0x00 摘要 0x01 支撑系统 1.1 引擎入口 1.2 SendRpcBackward 1.2.1 剖析 1.2.2 定义 1.2.3 构建 1.2.4 grads_ 0x02 定义 2.1 定义 2.2 单例 2.3 重要注释 2.3.1 成员变量 2.3.2 构建 2.3.3 GPU to CPU contin…
[源码解析] PyTorch 分布式 Autograd (6) ---- 引擎(下)
[源码解析] PyTtorch 分布式 Autograd (6) ---- 引擎(下) 目录 [源码解析] PyTtorch 分布式 Autograd (6) ---- 引擎(下) 0x00 摘要 0x01 回顾 0x02 执行GraphTask 2.1 runEngineAndAccumulateGradients 2.2 execute_graph_task_until_ready_queue_empty 2.3 evaluate_function 2.4 globalCpuThread 2…
pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py AUTOGRAD: AUTOMATIC DIFFERENTIATION PyTorch中所有神经网络的核心是autograd包.让我们先简单地看一下这个,然后我们来训练我们的第一个神经网络.autograd包为张量上的所有操作提供自动微分.它是一个按运行定义的框架,这…
关于Pytorch中autograd和backward的一些笔记
参考自<Pytorch autograd,backward详解>: 1 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor. 如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires_grad属性为True.为方便说明,在本文中对于这种我们自己定义的变量,我们称之为叶子节点(leaf nodes),而基于叶子节点得到的中间或最终变量则可称之为结果节点. 另外一个Tensor中通常会记录如下图中所示的属性: data:…
[源码解析] PyTorch 分布式(14) --使用 Distributed Autograd 和 Distributed Optimizer
[源码解析] PyTorch 分布式(14) --使用 Distributed Autograd 和 Distributed Optimizer 目录 [源码解析] PyTorch 分布式(14) --使用 Distributed Autograd 和 Distributed Optimizer 0x00 摘要 0x01 说明 0x02 启动 0x03 Trainer 0x04 模型 4.1 组件 4.1.1 参考代码 4.1.2 分布式修改 4.2 RNN 模型 4.3 分布式优化器 4.4…
Pytorch系列教程-使用Seq2Seq网络和注意力机制进行机器翻译
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html 系列教程总目录传送门:我是一个传送门 本系列教程对应的 jupyter notebook 可以在我的Github仓库下载: 下载地址:https://github.com/Holy-Shine/Pytorch-notebook 本教程我们将会搭建一个网络来将法语翻译成英语. [KE…