Burnside引理和Pólya定理】的更多相关文章

最近,研究了两天的Burnside引理和Polya定理之间的联系,百思不得其解,然后直到遇到下面的问题: 对颜色限制的染色 例:对正五边形的三个顶点着红色,对其余的两个顶点着蓝色,问有多少种非等价的着色? 其中置换的方法有旋转 \(0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}\), 穿过一个点做对称轴进行翻转. Burnside引理的证明 那么,在解决这个问题之间,我们首先要定义和证明一些东西: 在集合\(X\)的置换群…
转载自:https://blog.csdn.net/whereisherofrom/article/details/79631703 Burnside引理 笔者第一次看到Burnside引理那个公式的时候一头雾水,找了本组合数学的书一看,全是概念.后来慢慢从Polya定理开始,做了一些题总算理解了.本文将从最简单的例子出发,解释Burnside引理和Polya定理.然后提供一些自己做过的和上述定理相关的题目和解题报告. Burnside引理是为了解决m种颜色给n个对象染色的计数问题. [例题1]…
在组合数学中有这样一类问题,比如用红蓝两种颜色对2*2的格子染色,旋转后相同的算作一种.有多少种不同的染色方案?我们列举出,那么一共有16种.但是我们发现,3,4,5,6是同一种,7,8,9,10是用一种,11,12是同一种,13,14,15,16是同一种,也就是只有6种本质上不同的染色.小规模我们可以列举所有方案然后再选择,大规模的时候是很难列举所有方案的.下面,我们说明用Burnside引理和polay计数来解决这类问题. 一.置换群G:即指所有的置换.上面的例子中置换只有4种,即旋转0.9…
定义简化版: 置换,就是一个1~n的排列,是一个1~n排列对1~n的映射 置换群,所有的置换的集合. 经常会遇到求本质不同的构造,如旋转不同构,翻转交换不同构等. 不动点:一个置换中,置换后和置换前没有区别的排列 Burnside引理:本质不同的方案数=每个置换下不动点的个数÷置换总数(一个平均值) Polya定理:一个置换下不动点的个数=颜色^环个数.(辅助Burnside引理,防止枚举不动点复杂度过高) 这篇文章写得很详细了(具体的在此不说了): Burnside引理与Polya定理 **特…
感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运算"$*$",并满足 (1).封闭性:$\forall a, b \in G, \exists c \in G, a * b = c$ (2).结合律:$\forall a, b, c \in G, (a * b) * c = a * (b * c)$ (3).单位元:$\exists e…
原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序列循环同构,那么我们称这两个序列等价. 求两两不等价的序列个数. Burnside引理 假设有若干个置换 $P_1,P_2,\cdots$ ,设由这些置换生成的置换群为 $Q$ .如果序列 A 可以通过一个 $Q$ 中的置换变成序列 B,那么我们认为 A 和 B 等价. 对于一个置换 $P$ ,如果…
题目描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However…
题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. 置换是什么呢?  置换的广义概念在不同语境下有不同的形式定义: 在集合论中,一个集合的置换是从该集合映至自身的双射:在有限集的情况,便与上述定义一致. 在组合数学中,置换一词的传统意义是一个有序序列,其中元素不重复,但可能有阙漏.例如1,2,4,3可以称为1,2,3,4,5,6的一个置换,但是其中…
参考:刘汝佳<算法竞赛入门经典训练指南> 感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车. 置换:排列的一一映射.置换乘法相当于函数复合.满足结合律,不满足交换律. 置换的循环分解:即将置换看成一张有向图,分解成若干循环.循环的数量称为循环节. 以置换集合来描述等价关系.如果存在一个置换将一个方案映射到另一个方案,则这两个方案等价.置换集合应当构成置换群. 不动点:方案s经过置换f不变,则s为f的不动点. Burnside引理:等价类数量=所有置换的不动点数量的平…
burnside引理&polya定理 参考资料: <polya计数法的应用>--陈瑜希 黄学长 置换: 置换即是将n个元素的染色进行交换,产生一个新的染色方案. 群: 一个元素的集合G与一个二元运算(*)构成一个群.群满足以下性质: 封闭性:\(\forall a,b \in G,\exists c\in G ,c=a*b\) 结合律:\(\forall a,b,c,(a*b)*c=a*(b*c)\) 单位元:\(\exists e\in G,\forall a,a*e=e*a=a\)…