机器学习之路--seaborn】的更多相关文章

seaborn是基于plt的封装好的库.有很强的作图功能. 1.布局风格设置(图形的style)and 细节设置 用matplotlib作图: import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt x = np.linspace(0, 14, 100) for i in range(1, 7): plt.plot(x, np.sin(x + i * .5) * (7 - i)) plt.show()…
python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble…
python3 学习机器学习api 使用两种k近邻回归模型 分别是 平均k近邻回归 和 距离加权k近邻回归 进行预测 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import Standard…
使用python3 学习了线性回归的api 分别使用逻辑斯蒂回归  和   随机参数估计回归 对良恶性肿瘤进行预测 我把数据集下载到了本地,可以来我的git下载源代码和数据集:https://github.com/linyi0604/MachineLearning import numpy as np import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.preprocessi…
网上许多教程比较晦涩难懂,本教程按照笔者(新手)自己的视角记录,希望给大家一些帮助 1.安装anaconda 目前比较推荐的机器学习环境为anaconda. Anaconda指的是一个开源的Python发行版本,其包含了conda.Python等180多个科学包及其依赖项. 通过anaconda中的navigator我们可以方便的管理不同的python版本,随时创建或销毁一个环境,不同环境可以有不同的python版本(如,同时存在py3.6和py2.7),并且在不同的环境中允许使用存在不同的包.…
机器学习实战之kNN算法   机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplo…
在神经网络中,广泛的使用反向传播和梯度下降算法调整神经网络中参数的取值. 梯度下降和学习率: 假设用 θ 来表示神经网络中的参数, J(θ) 表示在给定参数下训练数据集上损失函数的大小. 那么整个优化过程就是寻找一个参数θ, 使得J(θ) 的值最小, 也就是求J(θ) 的最小值 损失函数J(θ)的梯度 = ∂ J(θ) / ∂ θ 此时定义一个学习率 η 梯度下降法更新参数的公式为: θn+1 = θn - η ( ∂ J(θn) / ∂ θn ) 将这个公式循环的重复下去,θ的值就从高处逐渐向…
git: https://github.com/linyi0604/MachineLearning/tree/master/07_tensorflow/ import tensorflow as tf from numpy.random import RandomState ''' 模拟一个回归案例 自定义一个损失函数为: 当真实值y_更大的时候 loss = a(y_ - y) 当预测值y更大的时候 loss = b(y - y_) loss_less = 10 loss_more = 1 l…
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q(x) 当事件总数是一定的时候, 概率函数满足:   任意x  p(X = x) ∈[0, 1] 且 Σ p(X=x) = 1 也就是说 所有时间发生的概率都是0到1 之间 , 且总有一个时间会发生,概率的和就为1. 2 tensorflow中softmax: softmax回归可以作为学习算法来优化…
git: https://github.com/linyi0604/MachineLearning/tree/master/07_tensorflow/ import tensorflow as tf # 利用numpy生成数据模拟数据集 from numpy.random import RandomState # 定义一个训练数据batch的大小 batch_size = 8 # 定义神经网络的参数 w1 = tf.Variable(tf.random_normal([2, 3], stdde…
计算图 tensorflow是一个通过计算图的形式来表示计算的编程系统tensorflow中每一个计算都是计算图上的一个节点节点之间的边描述了计算之间的依赖关系 张量 tensor张量可以简单理解成多维数组零阶张量为 标量 scala 也就是一个数n阶张量可以理解为n维数组 张量没有保存真正的数字 而是保存一个结果运算过程的引用 并不会执行加法运算获得一个张量 使用tf.constant(value, name, shape, dtype)dtype为数值类型,不同类型之间不能进行操作 会话 s…
git: https://github.com/linyi0604/MachineLearning 数据集被我下载到本地,可以去我的git上拿数据集 XGBoost提升分类器 属于集成学习模型 把成百上千个分类准确率较低的树模型组合起来 不断迭代,每次迭代生成一颗新的树 下面 对泰坦尼克遇难预测使用XGBoost模型 和 其他分类器性能进行比较 import pandas as pd from sklearn.cross_validation import train_test_split fr…
git: https://github.com/linyi0604/MachineLearning 词向量技术 Word2Vec 每个连续词汇片段都会对后面有一定制约 称为上下文context 找到句子之间语义层面的联系 from sklearn.datasets import fetch_20newsgroups from bs4 import BeautifulSoup import nltk, re from gensim.models import word2vec # nltk.dow…
git: https://github.com/linyi0604/MachineLearning 分别使用词袋法和nltk自然预言处理包提供的文本特征提取 from sklearn.feature_extraction.text import CountVectorizer import nltk # nltk.download("punkt") # nltk.download('averaged_perceptron_tagger') ''' 分别使用词袋法和nltk自然预言处理包…
git:https://github.com/linyi0604/MachineLearning 如何确定一个模型应该使用哪种参数? k折交叉验证: 将样本分成k份 每次取其中一份做测试数据 其他做训练数据 一共进行k次训练和测试 用这种方式 充分利用样本数据,评估模型在样本上的表现情况 网格搜索: 一种暴力枚举搜索方法 对模型参数列举出集中可能, 对所有列举出的可能组合进行模型评估 从而找到最好的模型参数 并行搜索: 由于每一种参数组合互相是独立不影响的 所有可以开启多线程进行网格搜索 这种方…
git:https://github.com/linyi0604/MachineLearning 正则化: 提高模型在未知数据上的泛化能力 避免参数过拟合正则化常用的方法: 在目标函数上增加对参数的惩罚项 削减某一参数对结果的影响力度 L1正则化:lasso 在线性回归的目标函数后面加上L1范数向量惩罚项. f = w * x^n + b + k * ||w||1 x为输入的样本特征 w为学习到的每个特征的参数 n为次数 b为偏置.截距 ||w||1 为 特征参数的L1范数,作为惩罚向量 k 为…
分享一下 线性回归中 欠拟合 和 过拟合 是怎么回事~为了解决欠拟合的情 经常要提高线性的次数建立模型拟合曲线, 次数过高会导致过拟合,次数不够会欠拟合.再建立高次函数时候,要利用多项式特征生成器 生成训练数据.下面把整个流程展示一下模拟了一个预测蛋糕价格的从欠拟合到过拟合的过程 git: https://github.com/linyi0604/MachineLearning 在做线性回归预测时候,为了提高模型的泛化能力,经常采用多次线性函数建立模型 f = k*x + b 一次函数f = a…
特征提取: 特征降维的手段 抛弃对结果没有联系的特征 抛弃对结果联系较少的特征 以这种方式,降低维度 数据集的特征过多,有些对结果没有任何关系,这个时候,将没有关系的特征删除,反而能获得更好的预测结果 下面使用决策树,预测泰坦尼克号幸存情况,对不同百分比的筛选特征,进行学习和预测,比较准确率 python3学习使用api 使用到联网的数据集,我已经下载到本地,可以到我的git中下载数据集 git: https://github.com/linyi0604/MachineLearning 代码:…
本特征提取: 将文本数据转化成特征向量的过程 比较常用的文本特征表示法为词袋法词袋法: 不考虑词语出现的顺序,每个出现过的词汇单独作为一列特征 这些不重复的特征词汇集合为词表 每一个文本都可以在很长的词表上统计出一个很多列的特征向量 如果每个文本都出现的词汇,一般被标记为 停用词 不计入特征向量 主要有两个api来实现 CountVectorizer 和 TfidfVectorizerCountVectorizer: 只考虑词汇在文本中出现的频率TfidfVectorizer: 除了考量某词汇在…
python3 学习使用api 将字典类型数据结构的样本,抽取特征,转化成向量形式 源码git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.feature_extraction import DictVectorizer ''' 字典特征提取器: 将字典数据结构抽和向量化 类别类型特征借助原型特征名称采用0 1 二值方式进行向量化 数值类型特征保持不变 ''' # 定义一个字典列表 用来表示多个数据样本 measu…
主成分分析: 降低特征维度的方法. 不会抛弃某一列特征, 而是利用线性代数的计算,将某一维度特征投影到其他维度上去, 尽量小的损失被投影的维度特征 api使用: estimator = PCA(n_components=20) pca_x_train = estimator.fit_transform(x_train) pca_x_test = estimator.transform(x_test) 分别使用支持向量机进行学习降维前后的数据再预测 该数据集源自网上 https://archive…
python3 学习使用api 使用了网上的数据集,我把他下载到了本地 可以到我的git中下载数据集: https://github.com/linyi0604/MachineLearning 代码: import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn import metrics ''' k均值算法: 1 随机选择k个样本作为k个类别的中心 2 从k个样本出发,选取最近的样…
python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTr…
python3 学习使用api 支持向量机的两种核函数模型进行预测 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm impor…
python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model i…
python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/linyi0604/MachineLearning import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.feature_extraction import DictVectoriz…
使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https://github.com/linyi0604/MachineLearning import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.feature_extraction impor…
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors…
使用python3 学习朴素贝叶斯分类api 设计到字符串提取特征向量 欢迎来到我的git下载源代码: https://github.com/linyi0604/MachineLearning from sklearn.datasets import fetch_20newsgroups from sklearn.cross_validation import train_test_split # 导入文本特征向量转化模块 from sklearn.feature_extraction.text…
使用python3 学习sklearn中支持向量机api的使用 可以来到我的git下载源代码:https://github.com/linyi0604/MachineLearning # 导入手写字体加载器 from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler fr…