pytorch 优化器调参】的更多相关文章

torch.optim 如何使用optimizer 构建 为每个参数单独设置选项 进行单次优化 optimizer.step() optimizer.step(closure) 算法 如何调整学习率 torch.optim是实现各种优化算法的包.最常用的方法都已经支持,接口很常规,所以以后也可以很容易地集成更复杂的方法. 如何使用optimizer 要使用torch.optim,您必须构造一个optimizer对象.这个对象能保存当前的参数状态并且基于计算梯度更新参数 构建 要构造一个Optim…
[源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0x01 模型构造 1.1 Module 1.2 成员变量 1.3 _parameters 1.3.1 构建 1.3.2 归类 1.3.3 获取 1.4 Linear 1.4.1 使用 1.4.2 定义 1.4.3 解释 0x02 Optimizer 基类 2.1 初始化 2.2 添加待优化变量 2.…
[源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之中的优化器 2.1 流程 2.2 使用 0x03 DDP 之中的优化器 3.1 流程 3.2 优化器状态 3.3 使用 0x04 Horovod 的优化器 4.1 hook 同步梯度 4.1.1 注册 hooks 4.1.2 归并梯度 4.1.2.1 MPI 函数 4.1.2.2 原理图 4.2 s…
[源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 基本用法 2.2 将模型并行应用到现有模块 2.3 问题与方案 2.3.1 目前状况 2.3.2 解决方案 2.4 通过流水线输入加速 0x03 分布式问题和方案 3.1 思路 3.2 PyTorch 的思路 3.2.1 四大天王 3.2.2 逻辑关系 0x04 PyTorch 分布式优化器 4.…
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM.BiLSTM等多个神经网络模型的的实现.这篇文章总结一下最近一段时间遇到的问题.处理方法和相关策略,以及经验(其实并没有什么经验)等,白菜一枚. Demo Site:  https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-…
关于优化函数的调整拆下包:https://ptorch.com/docs/1/optim class torch.optim.Optimizer(params, defaults)所有优化的基类. 参数: params (iterable) —— 可迭代的Variable 或者 dict.指定应优化哪些变量.defaults-(dict):包含优化选项的默认值的dict(一个参数组没有指定的参数选项将会使用默认值).load_state_dict(state_dict)加载optimizer状态…
这是个人在竞赛中对LGB模型进行调参的详细过程记录,主要包含下面六个步骤: 大学习率,确定估计器参数n_estimators/num_iterations/num_round/num_boost_round: 确定num_leaves和max_depth 确定min_data_in_leaf 确定bagging_fraction+bagging_freq和feature_fraction 确定L1L2正则reg_alpha和reg_lambda: 降低学习率 [这里必须说一下,lightbg的参…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/momentum.py 这篇文章主要介绍了 PyTorch 中的优化器,包括 3 个部分:优化器的概念.optimizer 的属性.optimizer 的方法. 优化器的概念 P…
前几节介绍了下常用的函数和常踩的坑以及如何打包程序,现在来说下如何调参优化.当我们开发完一个项目,测试完成后,就要提交到服务器上运行,但运行不稳定,老是抛出如下异常,这就很纳闷了呀,明明测试上没问题,咋一到线上就出bug了呢!别急,我们来看下这bug到底怎么回事~ 一.错误分析 1.参数设置及异常信息 18/10/08 16:23:51 WARN TransportChannelHandler: Exception in connection from /10.200.2.95:40888 ja…
前言:本篇是TextCNN系列的第三篇,分享TextCNN的优化经验 前两篇可见: 文本分类算法TextCNN原理详解(一) TextCNN代码详解(附测试数据集以及GitHub 地址)(二) 调优模型的基本方法 大家如果跑过模型的话,不论是demo还是实际项目,通常的情况都是先跑一次看看效果,然后针对某些效果不好的地方做一些调优,俗称「调参狗」,调优有很多方法,基本的方法是:根据模型在测试集合的badcase 来分析有没有共性的问题,譬如做一个文本分类,我们在训练集上效果很好,但是测试集上,某…