pytorch之 regression】的更多相关文章

import torch import torch.nn.functional as F import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # 将1维数据转换成2维数据,torch不能处理1维数据.x data (tensor), shape=(100, 1) y = x.pow(2) + 0.2*…
import torch import torch.nn.functional as F import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1) y = x.pow(2) + 0.2*torch.rand(x.size()) # nois…
Linear Regression with PyTorch Problem Description 初始化一组数据 \((x,y)\),使其满足这样的线性关系 \(y = w x + b\) .然后基于反向传播法,用均方误差(mean squared error) \[ MSE = \frac{1}{n} \sum_{n} (y- \hat y)^{2} \] 去拟合这组数据. 衡量两个分布之间的距离,最直接的方法是用交叉熵. 我们用最简单的一元变量去拟合这组数据,其实一元线性回归的表达式 \…
1.PyTorch基础实现代码 import torch from torch.autograd import Variable torch.manual_seed(2) x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]])) y_data = Variable(torch.Tensor([[0.0], [0.0], [1.0], [1.0]])) #初始化 w = Variable(torch.Tensor([-1]), re…
关于RNN模型参数的解释,可以参看RNN参数解释 1 import torch from torch import nn import numpy as np import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters TIME_STEP = 10 # rnn time step INPUT_SIZE = 1 # rnn input size LR = 0.02 # learni…
Extracting knowledge from knowledge graphs using Facebook Pytorch BigGraph 2019-04-27 09:33:58 This blog is copied from: https://towardsdatascience.com/extracting-knowledge-from-knowledge-graphs-e5521e4861a0 Machine learning gives us the ability to t…
PyTorch Basics import torch import torchvision import torch.nn as nn import numpy as np import torchvision.transforms as transforms # ================================================================== # # Table of Contents # # =======================…
转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is inspired by the famous Awesome TensorFlow repository where this repository would hold tutorials, projects, libraries, videos, papers, books and anythi…
pytorch官方给的加载数据的方式是已经定义好的dataset以及loader,如何加载自己本地的图片以及label? 形如数据格式为 image1 label1 image2 label2 ... imagen labeln 实验中我采用的数据的格式如下,一个图片的名字对应一个label,每一个label是一个9维的向量 1_-2_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.304295635957 0.952577642997…
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network wide and deep ? Lecture 08: Pytorch DataLoader Lecture 09: softmax Classifier part one part two : real problem - MNIST i…