MapReduce初级案例】的更多相关文章

1.数据去重  "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重.下面就进入这个实例的MapReduce程序设计. 1.1 实例描述 对数据文件中的数据进行去重.数据文件中的每行都是一个数据. 样例输入如下所示: 1)file1: 2012-3-1 a 2012-3-2 b 2012-3-3 c 2012-3-4 d 2012-3-5 a 2012-3-6 b 2012-3-7…
MapReduce 使用案例 MapReduce在面试过程中出现的频率还是挺高的,尤其是数据挖掘等岗位.通常面试官会出一个大数据题目,需要被试者根据题目设计基于MapReduce的算法来解答.我在一个大神的博客中找到相关的MapReduce使用案例,下面将链接分享出来.鉴于目前自身对MapReduce的理解不够深刻,暂时不做翻译. 下面是链接 https://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/…
批处理引擎MapReduce应用案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MapReduce能够解决的问题有一个共同特点:任务可以被分解为多个子问题,且这些子问题相对独立,彼此之间不会有牵制,待并行处理完成这些子问题后,总的问题便被解决. 在实际应用中,这类问题非常庞大,谷歌在论文中提到一些MapReduce的典型应用,包括分布式grep,URL访问频率统计,Web链接图反转,倒排索引构建,分布式排序等,这些均为比较简单的应用.下面介绍一些比较复杂应用. 一.Top…
一.什么是Shuffle yarn-site.xml文件配置的时候有这个参数:yarn.nodemanage.aux-services:mapreduce_shuffle 因为mapreduce程序运行在nodemanager上,nodemanager运行mapreduce程序的方式就是shuffle. 1.首先,数据在HDFS上是以数据块的形式保存,默认大小128M. 2.数据块对应成数据切片送到Mapper.默认一个数据块对应一个数据切块. 3.Mapper阶段 4.Mapper处理完,写到…
1 环境说明 注意:本实验是对前述实验的延续,如果直接点开始实验进入则需要按先前学习的方法启动hadoop 部署节点操作系统为CentOS,防火墙和SElinux禁用,创建了一个shiyanlou用户并在系统根目录下创建/app目录,用于存放 Hadoop等组件运行包.因为该目录用于安装hadoop等组件程序,用户对shiyanlou必须赋予rwx权限(一般做法是root用户在根目录下 创建/app目录,并修改该目录拥有者为shiyanlou(chown –R shiyanlou:shiyanl…
1. 实例描述 单表关联这个实例要求从给出的数据中寻找出所关心的数据,它是对原始数据所包含信息的挖掘. 实例中给出child-parent 表, 求出grandchild-grandparent表. 输入数据 file01: child parent Tom Lucy Tom Jack Jone Lucy Jone Jack Lucy Marry Lucy Ben Jack Alice Jack Jesse Terry Alice Terry Jesse Philip Terry Philip…
1. 设计思路 在MapReduce过程中自带有排序,可以使用这个默认的排序达到我们的目的. MapReduce 是按照key值进行排序的,我们在Map过程中将读入的数据转化成IntWritable类型,然后作为Map的key值输出. Reduce 阶段拿到的就是按照key值排序好的<key,value list>,将key值输出,并根据value list 中元素的个数决定key的输出次数. 2. 实现 2.1 程序代码 package sort; import java.io.IOExce…
1. 设计思路 去重,重点就是无论某个数据在文件中出现多少次,最后只是输出一次就可以. 根据这一点,我们联想到在reduce阶段数据输入形式是 <key, value list>,只要是key相同的,在shuffle阶段都会聚合在一起,所以只要在map阶段将要去重的数据作为key值就可以达到目的. 2. 具体实现 package moverepeat; import java.io.IOException; import org.apache.hadoop.conf.Configuration…
1.数据去重  "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重.下面就进入这个实例的MapReduce程序设计. 1.1 实例描述 对数据文件中的数据进行去重.数据文件中的每行都是一个数据. 样例输入如下所示: 1)file1: 2012-3-1 a 2012-3-2 b 2012-3-3 c 2012-3-4 d 2012-3-5 a 2012-3-6 b 2012-3-7…
准备工作  拷贝原来的模板 mkdir oozie-apps cd oozie-apps/ cp -r ../examples/apps/mar-reduce . mv map-reduce mr-wordcount-wf 配置文件修改 workflow.xml : <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTI…
在进行流量排序之前,先要明白排序是发生在map阶段,排序之后(排序结束后map阶段才会显示100%完成)才会到reduce阶段(事实上reduce也会排序),.此外排序之前要已经完成了手机流量的统计工作,即把第一次mr的结果作为本次排序的输入.也就是说读取的数据格式为     手机号 上行流量 下行流量 总流量 1,map阶段,读取并封装流量信息,不同的是context.write()时key必须是封装的实体类,而不再是手机号 /** * 输入key 行号 * 输入value 流量信息 * 输出…
先改pom.xml: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <…
using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI; public class MainUIControl : MonoBehaviour { private static MainUIControl _instance; public static MainUIControl instance { get { return _instance; }…
  此篇是在零基础学习hadoop到上手工作线路指导(初级篇)的基础,一个继续总结.五一假期:在写点内容,也算是总结.上面我们会了基本的编程,我们需要对hadoop有一个更深的理解:hadoop分为hadoop1.X.hadoop2.X,并且还有hadoop生态系统.这里只能慢慢介绍了.一口也吃不成胖子. hadoop 1.x分为mapreduce与hdfs 其中mapreduce是很多人都需要迈过去的槛,它比较难以理解,我们有时候即使写出了mapreduce程序,但是还是摸不着头脑.我们不知道…
原文链接http://www.aboutyun.com/thread-7091-1-1.html 1.思想起源: 我们在学习mapreduce,首先我们从思想上来认识.其实任何的奇思妙想,抽象的,好的想法.都来源于我们生活,而我们也更容易理解我们身边所发生事情.所以下面一篇便是从生活的角度,来让我们理解,什么是mapreduce.Hadoop简介(1):什么是Map/Reduce 2.设计思路 我们从思想上认识了mapreduce,那么mapreduce具体是什么,我们需要看得见,摸得着.我们该…
  Nosql资源: http://www.aboutyun.com/thread-5655-1-1.html (1)redis安置(2)RedisAdminUI.zip(3)redis安装部署(4)redis技术深层剖析及应用实践经验(sina微博)(5)Redis内存存储结构分析(6)redis起步(7)Redis容量及使用规划(8)Redis新的存储模式diskstore(9)Redis学习笔记(11)redis应用场景(12)redis应用之日志汇总(13)构建可扩展微博架构(14)浅谈…
我看过的比较全的文章.赞一下 原文链接:http://www.aboutyun.com/thread-8329-1-1.html 问题导读: 1.hadoop编程需要哪些基础?2.hadoop编程需要注意哪些问题?3.如何创建mapreduce程序及其包含几部分?4.如何远程连接eclipse,可能会遇到什么问题?5.如何编译hadoop源码? 阅读此篇文章,需要些基础下面两篇文章零基础学习hadoop到上手工作线路指导(初级篇) http://www.aboutyun.com/thread-6…
问题导读: 1.hadoop编程需要哪些基础? 2.hadoop编程需要注意哪些问题? 3.如何创建mapreduce程序及其包含几部分? 4.如何远程连接eclipse,可能会遇到什么问题? 5.如何编译hadoop源码? 阅读此篇文章,需要些基础下面两篇文章 零基础学习hadoop到上手工作线路指导(初级篇) 零基础学习hadoop到上手工作线路指导(中级篇) 如果看过的话,看这篇不成问题,此篇讲hadoop编程篇. hadoop编程,hadoop是一个Java框架,同时也是编程的一次革命,…
此篇是在零基础学习hadoop到上手工作线路指导(初级篇)的基础,一个继续总结. 五一假期:在写点内容,也算是总结.上面我们会了基本的编程,我们需要对hadoop有一个更深的理解: hadoop分为hadoop1.X.hadoop2.X,并且还有hadoop生态系统.这里只能慢慢介绍了.一口也吃不成胖子. hadoop 1.x分为 mapreduce与hdfs 其中mapreduce是很多人都需要迈过去的槛,它比较难以理解,我们有时候即使写出了mapreduce程序,但是还是摸不着头脑. 我们不…
1.工具介绍 Eclipse Idigo.JDK1.7-32bit.hadoop1.2.1.hadoop-eclipse-plugin-1.2.1.jar(自己网上下载) 2.插件安装步骤 1)将hadoop-eclipse-plugin-1.2.1.jar放到eclipse安装目录的plugins文件夹中,重新启动eclipse.…
1.Eclipse中无插件运行MP程序 1)在Eclipse中编写MapReduce程序 2)打包成jar包 3)使用FTP工具,上传jar到hadoop 集群环境 4)运行 2.具体步骤 说明:该程序运行完被我删除了,具体添加哪些包不太清楚,但是最保险的是把有可能用到的都添加进去,添加情况如下:…
doc Hadoop初探之Stream Hadoop Stream 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍,样例程序与本地调试 用python + hadoop streaming 编写分布式程序(二) -- 在集群上运行与监控 用python + hadoop streaming 编写分布式程序(三) -- 自定义功能 使用Python实现Hadoop MapReduce程序 Hadoop集群(第9期)_MapReduce初级案例 Hadoo…
MapReduce基本原理和高性能网络下优化: Mapreduce概述 Mapreduce式谷歌开源的一项重要技术,是一个编程模型,用来进行大数据量的计算,对于大数据量的计算通常采用的处理方式式并行计算,对于许多开发者来说,自己完全实现一个并行计算程序难度太大.而MapReduce就是一种简化并行计算的模型,它使得那些没有多少并行计算经验的开发人员也可以开发出并行计算应用程序,通过简化编程模型,降低了开发并行应用程序的难度. 工作原理 并行计算模型通常从并行计算的设计和分析出发,将各种并行计算机…
摘要:MapReduce程序进行单词计数. 关键词:MapReduce程序  单词计数 数据源:人工构造英文文档file1.txt,file2.txt. file1.txt 内容 Hello   Hadoop I   am  studying   the   Hadoop  technology file2.txt内容 Hello  world The  world  is  very  beautiful I   love    the   Hadoop    and    world 问题描…
摘要:MapReduce程序进行数据去重. 关键词:MapReduce   数据去重 数据源:人工构造日志数据集log-file1.txt和log-file2.txt. log-file1.txt内容 2014-1-1    wangluqing 2014-1-2    root 2014-1-3   root 2014-1-4  wangluqing 2014-1-5  root 2014-1-6  wangluqing log-file2.txt内容 2014-1-1  root 2014-…
摘要: 通过前面的学习,大家已经了解了HDFS文件系统.有了数据,下一步就要分析计算这些数据,产生价值.接下来我们介绍Mapreduce计算框架,学习数据是怎样被利用的. 博主福利 给大家赠送一套hadoop视频课程 授课老师是百度 hadoop 核心架构师 内容包括hadoop入门.hadoop生态架构以及大型hadoop商业实战案例. 讲的很细致, MapReduce 就讲了 15 个小时. 学完后可以胜任 hadoop 的开发工作,很多人学的这个课程找到的工作. (包括指导书.练习代码.和…
对单词个数统计的MapReduce的案例 Mapper类: package main.java.worldClient; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; /** * <KEYIN,VALUEIN,KEYOUT,VALUEOUT> * 分…
Chapter 4. Data Organization Patterns 与前面章节的过滤器相比,本章是关于数据重组.个别记录的价值通常靠分区,分片,排序成倍增加.特别是在分布式系统中,因为这能提高性能. 在很多组织结构方面,Hadoop和其它MapReduce使用案例仅仅是大数据分析平台上一片数据的处理.数据通常被转换成跟其它系统有良好接口的形式,同样,数据也可能从原来状态转成一种新的状态,从而使MapReduce分析更容易. 本章包括下面几个子模式: ·分层结构模式 ·分区和装箱模式 ·全…
我们在前一章已经学习了HDFS: hadoop基础----hadoop理论(三)-----hadoop分布式文件系统HDFS详细解释 我们已经知道Hadoop=HDFS(文件系统,数据存储技术相关)+ MapReduce(数据处理). 本章就来学习MapReduce数据处理. MapReduce是什么 MapReduce是现今一个非常流行的分布式处理数据的编程模型.它被设计用于并行计算海量数据.第一个提出该技术框架的是Google公司,而Google的灵感则来自于函数式编程语言.如LISP, S…
批处理引擎MapReduce编程模型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MapReduce是一个经典的分布式批处理计算引擎,被广泛应用于搜索引擎索引构建,大规模数据处理等场景中,具有易于编程,良好的扩展性与容错性以及高吞吐率等特点.它主要由两部分组成:编程模型和运行时环境.其中编程模型为用户提供了非常易用的编程接口,用户只需像编写串行程序一样实现几个简单的函数即可实现一个分布式程序,而其他比较复杂的工作,如节点间的通信,节点失效,数据切分等,全部由MapReduc…