The basic concept of information theory.】的更多相关文章

Deep Learning中会接触到的关于Info Theory的一些基本概念.…
Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, Chapter 1 Introdcution 1. Information h(x) Given a random variable and we ask how much information is received when we observe a specific value for thi…
This will be a series of post about Tree model and relevant ensemble method, including but not limited to Random Forest, AdaBoost, Gradient Boosting and xgboost. So I will start with some basic of Information Theory, which is an importance piece in T…
Better intuition for information theory 2019-12-01 21:21:33 Source: https://www.blackhc.net/blog/2019/better-intuition-for-information-theory/ The following blog post is based on Yeung’s beautiful paper “A new outlook on Shannon’s information measure…
信息论(Information Theory)是概率论与数理统计的一个分枝.用于信息处理.信息熵.通信系统.数据传输.率失真理论.密码学.信噪比.数据压缩和相关课题.本文主要罗列一些基于熵的概念及其意义,注意本文罗列的所有 $\log$ 都是以 2 为底的. 信息熵 在物理界中熵是描述事物无序性的参数,熵越大则越混乱.类似的在信息论中熵表示随机变量的不确定程度,给定随机变量 X ,其取值 $x_1, x_2, \cdots ,x_m$ ,则信息熵为: \[H(X) =\sum_{i=1}^{m}…
https://en.wikipedia.org/wiki/Claude_Shannon In 1948, the promised memorandum appeared as "A Mathematical Theory of Communication," an article in two parts in the July and October issues of the Bell System Technical Journal. This work focuses on…
Getting started with react.js: basic concept of React component 1 What is React.js React, or React.js is an open source javascript framework from Facebook. React.js is ideal for doing view rendering work in large scale or single page application (SPA…
这个时代已经是多学科相互渗透的时代,纯粹的传统学科在没落,新兴的交叉学科在不断兴起. life science neurosciences statistics computer science information theory 我的问题很简单: 一个细胞里到底保存了多少信息,复制.转录.翻译过程中传递了多少信息? 神经突触传递信息的上限是多少? 想回答这些问题就必须要学习信息论! 什么是信息? 两个同样的光碟里保存的信息是一样的吗? 人和信息的关系是什么?假设所有人都不存在了,信息还存在吗…
熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无悬念) 如果x和y独立无关,那么: 他们之间的关系为: (p(x)=1时,h(x)=0,负号为了确保h(x)为正,这里取2为底是随机的,可以取其他的正数(除了1)) 因此,对于所有x的取值,它的熵有: 注:,当遇到时, 这里插一段信息熵的解释: ———————————————————————————…