import argparse import tensorflow as tf tf.enable_eager_execution() def main(args): """Download the Microsoft COCO 2014 data set.""" # Annotation zip tf.keras.utils.get_file(fname=args.annotation_zip, origin=args.annotation_o…
代码和其他资料在 github 一.tf.keras概述 首先利用tf.keras实现一个简单的线性回归,如 \(f(x) = ax + b\),其中 \(x\) 代表学历,\(f(x)\) 代表收入,分别代表输入特征和输出值.为了描述预测目标与真实值之间的整体误差最小,需要定义一个损失函数,数学描述为\((f(x) - y)^2\),即预测值与真实值差值的平方的均值.优化的目标是求解参数 \(a,b\) 使其损失函数最小. import tensorflow as tf import pand…
TensorFlow 2.0 版本将 keras 作为高级 API,对于 keras boy/girl 来说,这就很友好了.tf.keras 从 1.x 版本迁移到 2.0 版本,需要修改几个地方. 1. 设置随机种子 import tensorflow as tf # TF 1.x tf.set_random_seed(args.seed) # TF 2.0 tf.random.set_seed(args.seed) 2. 设置并行线程数和动态分配显存 import tensorflow as…
一些最常用的数据集如 MNIST.Fashion MNIST.cifar10/100 在 tf.keras.datasets 中就能找到,但对于其它也常用的数据集如 SVHN.Caltech101,tf.keras.datasets 中没有,此时我们可以在 TensorFlow Datasets 中找找看. tensorflow_datasets 里面包含的数据集列表:https://www.tensorflow.org/datasets/catalog/overview#all_dataset…
Update:2019/09/21 使用 tf.keras 时,请使用 tf.keras.optimizers 里面的优化器,不要使用 tf.train 里面的优化器,不然学习率衰减会出现问题. 使用 tf.keras 过程中,如果要使用 learning rate decay,不要使用 tf.train.AdamOptimizer() 等 tf.train 内的优化器,因为学习率的命名不同,导致 tf.keras 中学习率衰减的函数无法使用,一般都会报错 "AttributeError: 'T…
在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager_execution() # parameters UNITS = 8 class Encoder(tf.keras.Model): def __init__(self): super(Encoder, self).__init__() self.fc1 = tf.keras.layers.Dens…
自定义tf.keras.Model需要注意的点 model.save() subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_format="tf" NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work…
https://blog.csdn.net/houchaoqun_xmu/article/details/78492718 [keras]解决 example 案例中 MNIST 数据集下载不了的问题 2017年11月10日 09:57:06 Houchaoqun_XMU 阅读数:15683   前言: keras 源码中下载MNIST的方式是 path = get_file(path, origin='https://s3.amazonaws.com/img-datasets/mnist.np…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
cifar-10 每张图片的大小为 32×32,而 AlexNet 要求图片的输入是 224×224(也有说 227×227 的,这是 224×224 的图片进行大小为 2 的 zero padding 的结果),所以一种做法是将 cifar-10 数据集的图片 resize 到 224×224. 此时遇到的问题是,cifar-10 resize 到 224×224 时,32G 内存都将无法完全加载所有数据,在归一化那一步(即每个像素点除以 255)就将发生 OOM(out of memory)…