最完整的数据倾斜解决方案(spark)】的更多相关文章

一.了解数据倾斜 数据倾斜的原理: 在执行shuffle操作的时候,按照key,来进行values的数据的输出,拉取和聚合.同一个key的values,一定是分配到一个Reduce task进行处理. 假如多个key对应的values,总共是90万,但是可能某个key对应了88万条数据,key-88万条values,分配到一个task上面去执行. 另外两个task,可能各分配到了1万条数据,可能是数百个key,对应一万条数据. 数据倾斜的现象: 发生数据倾斜的两种表现: 1.你的大部分的task…
1.数据倾斜的原理 2.数据倾斜的现象 3.数据倾斜的产生原因与定位 在执行shuffle操作的时候,大家都知道,我们之前讲解过shuffle的原理. 是按照key,来进行values的数据的输出.拉取和聚合的. 同一个key的values,一定是分配到一个reduce task进行处理的. 多个key对应的values,总共是90万. 但是问题是,可能某个key对应了88万数据,key-88万values,分配到一个task上去面去执行. 另外两个task,可能各分配到了1万数据,可能是数百个…
本文转发自技术世界,原文链接 http://www.jasongj.com/spark/skew/ Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势  发表于 2017-02-28 |  更新于 2017-10-17 | 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等. 摘要 本文结合实例详细阐明了Sp…
[使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一个RDD中的所有key都分布比较均匀,此时可以考虑采用本解决方案. [解决方案] 对有数据倾斜那个RDD,使用sample算子采样出一份样本,统计下每个key的数量,看看导致数据倾斜数据量最大的是哪几个key. 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个ke…
[使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] 小表join大表转为小表broadcast+map大表实现.具体为: 普通的join是会shuffle的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join,此时如果发生数据倾斜,影响处理性能,而此时恰好一…
数据倾斜导致的致命后果: 1 数据倾斜直接会导致一种情况:OOM. 2 运行速度慢,特别慢,非常慢,极端的慢,不可接受的慢. 搞定数据倾斜需要: 1.搞定shuffle 2.搞定业务场景 3 搞定 cpu core的使用情况 4 搞定OOM的根本原因等. 数据倾斜的解决方案: 解决方案一:使用Hive ETL预处理数据 方案适用场景:导致数据倾斜的是Hive表.如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spar…
数据倾斜解决方案 数据倾斜的解决,跟之前讲解的性能调优,有一点异曲同工之妙. 性能调优中最有效最直接最简单的方式就是加资源加并行度,并注意RDD架构(复用同一个RDD,加上cache缓存).相对于前面,shuffle.jvm等是次要的. 6.1.原理以及现象分析 6.1.1.数据倾斜怎么出现的 在执行shuffle操作的时候,是按照key,来进行values的数据的输出.拉取和聚合的. 同一个key的values,一定是分配到一个reduce task进行处理的. 多个key对应的values,…
Hadoop基础-MapReduce的数据倾斜解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据倾斜简介 1>.什么是数据倾斜 答:大量数据涌入到某一节点,导致此节点负载过重,此时就产生了数据倾斜. 2>.处理数据倾斜的两种方案 第一:重新设计key: 第二:设计随机分区: 二.模拟数据倾斜 screw.txt 文件内容 1>.App端代码 /* @author :yinzhengjie Blog:http://www.cnblogs.com/yinzh…
数据倾斜调优与shuffle调优 数据倾斜发生时的现象 1)个别task的执行速度明显慢于绝大多数task(常见情况) 2)spark作业突然报OOM异常(少见情况) 数据倾斜发生的原理 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.以至于大部分task只需几分钟,而个别task需要几小时,导致整个task作业需要几个小时才能运行完成.而且如果某个task数据量特别大的时候,甚至会导致…
[版权申明:本文系作者原创,转载请注明出处] 文章出处:http://blog.csdn.net/sdksdk0/article/details/51675005 作者: 朱培          ID:sdksdk0 Hive环境的搭建在这里也不重复说了,安装配置可以查看我的这篇文章:http://blog.csdn.net/sdksdk0/article/details/51512031.在这里主要是分享一下HQL语句实践及其函数的基本使用. 一.Hive的基本概念 在Hive中没有插入操作,…