opencv中keypoint数据结构分析】的更多相关文章

分析opencv中keypoint数据结构的相关信息,找到opencv的document(http://docs.opencv.org/java/org/opencv/features2d/KeyPoint.html).可以看到KeyPoint这数据结构中有如下数据结构: angle:角度,表示关键点的方向,通过Lowe大神的论文可以知道,为了保证方向不变形,SIFT算法通过对关键点周围邻域进行梯度运算,求得该点方向.-1为初值. class_id:当要对图片进行分类时,我们可以用class_i…
KeyPoint这数据结构中有如下数据成员: angle:角度,表示特征点的方向,通过Lowe大神的论文可以知道,为了保证方向不变形,SIFT算法通过对特征点周围邻域进行梯度运算,求得该点方向.-1为初值. class_id:当要对图片进行分类时,我们可以用class_id对每个特征点进行区分,未设定时为-1,需要靠自己设定. size:特征点领域的直径. octave:代表是从金字塔哪一层提取的得到的数据. pt:特征点的坐标. response:响应程度,代表该点强壮大小,即该点是特征点的程…
最近再写一段程序的时候,要访问Mat中的元素.在定义Mat型数据的时候,用 Mat ObjectPoints(48,3,CV_32FC1,0) 对其进行初始化后,用at进行访问时报内存错误. Mat ObjectPoints(,,CV_32FC1); Mat ImgPoints(,,CV_32FC1); Mat CameraMatrix(,,CV_32FC1); CvMat *intrinsic_matrix; CvMat *ObjPoint; CvMat *ImgPoint; CvMat ro…
cv::Matdepth/dims/channels/step/data/elemSizeThe class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store (Mat类的对象用于表示一个多维度的单通道或者多通道稠密数组,它可以用来存储以下东西)real or complex-valued vectors or matrice…
最近在将Karlsruhe Institute of Technology的Andreas Geiger发表在ACCV2010上的Efficent Large-Scale Stereo Matching代码仿真.Andreas提供的源码中没有使用opencv,导致我一时无法适应如何显示处理的中间结果.将对应的库加载后,仿照采集相机图像数据的方式,从内存中读取对应图像到IplImage类型指针指定的内存空间,方便代码的调试和效果观测.其中用到的部分资料如下. *******************…
Mat作为opencv中一种数据类型常常用来存储图像,相对与以前的IplImgae类型来说,Mat类型省去了人工的对内存的分配与释放,转而自动分配释放.Mat Class主要包括两部个数据部分:一个是matrix header(包括matrix的大小尺寸,储存方法,储存地址等等..),另一个是指向存储像素值的矩阵的指针. Opencv中对Mat的复制分为两种, Mat A, C; // creates just the header parts A = imread(argv[], CV_LOA…
在使用OpenCV开发程序时,如果想查看矩阵数据,比较费劲,而matlab查看数据很方便,有一种方法,是matlab和c++混合编程,可以用matlab访问c++的内存,可惜我不会这种方式,所以我就把数据写到文件里,用matlab读出来,然后用matlab各种高级功能查看数据的值. 1.将Mat的数据写入指定文件 为了方便拿来主义者,我直接把这个函数贴出来,你只要把代码拷贝到自己的代码里,就可以直接用了.如果有问题,赶紧评论,我会尽快看看问题出在哪里. #include <iostream>…
原文:OpenCV中对Mat里面depth,dims,channels,step,data,elemSize和数据地址计算的理解 Title : cv::Mat depth/dims/channels/step/data/elemSize The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store (Mat类的对象用…
什么是色彩映射: 说直白点就是将各种数据映射成颜色信息,例如:温度,高度,压力,密度,湿度,城市拥堵数据等等 色彩化后更加直观表达 在OpenCV里可以使用 Mat im_gray = imread("pluto.jpg", IMREAD_GRAYSCALE); Mat im_color; applyColorMap(im_gray, im_color, COLORMAP_JET); 这种方式将一个灰度数据安装一定得映射方式对应上一个颜色值,灰度图里存储你的温度数据,高度数据什么的都可…
opencv3中图形存储基本为Mat格式,如果我们想获取像素点的灰度值或者RGB值,可以通过image.at<uchar>(i,j)的方式轻松获取. Mat类中的at方法对于获取图像矩阵某点的RGB值或者改变某点的值很方便,对于单通道的图像,则可以使用: image.at<uchar>(i, j) 其中有一个要注意的地方是i对应的是点的y坐标,j对应的是点的x坐标,而不是我们习惯的(x,y) 来获取或改变该点的值,而RGB通道的则可以使用: image.at<Vec3b>…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函数进行角点检测原理 我们前面学习了几个特征检测器,它们大多数效果都很好.但是从实时处理的角度来看,这些算法都不够快.一个最好例子就是 SLAM(同步定位与地图构建),移动机器人,它们的计算资源非常有限.为了解决这个问题,Edward_Rosten 和 Tom_Drummond 在 2006 年提出里…
opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型较CvMat和IplImage有更强的矩阵运算能力,支持常见的矩阵运算(参照Matlab中的各种矩阵运算),所以将IplImage类型和CvMat类型转换为Mat类型更易于数据处理. Mat类型可用于直接存储图像信息,通过函数imread.imwrite.imshow等实现(与Matlab中的函数相…
说明:本文所有算法的涉及到的优化均指在PC上进行的,对于其他构架是否合适未知,请自行试验. Box Filter,最经典的一种领域操作,在无数的场合中都有着广泛的应用,作为一个很基础的函数,其性能的好坏也直接影响着其他相关函数的性能,最典型莫如现在很好的EPF滤波器:GuideFilter.因此其优化的档次和程度是非常重要的,网络上有很多相关的代码和博客对该算法进行讲解和优化,提出了不少O(1)算法,但所谓的0(1)算法也有优劣之分,0(1)只是表示执行时间和某个参数无关,但本身的耗时还是有区别…
在用Opencv的时候由于下图原本的图像尺寸是1111*1111,要进行resize,代码如下: cv::Mat img = cv::imread("//Users//apple//td3//vase//19201.png",CV_LOAD_IMAGE_GRAYSCALE); cv::Mat img2; cv::resize(img, img2, cv::Size(400,400),0,0, cv::INTER_AREA); 因为我根本不知道img的数据是什么类型(不知道数据类型根本无…
CUDA基本使用方法 在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下: 1.主机代码执行:2.传输数据到GPU:3.确定grid,block大小: 4.调用内核函数,GPU运行程序:5.传输结果到CPU:6.继续主机代码执行. 下图是两个向量相加的简单示例程序和处理流图. 注意的问题:cu,cpp文件的组织 内核函数和其wrapper函数置于cu文件中. 在cpp文件声明wrapper函数,并调用wrapper函数. wrapper函数的声明定义需加ext…
http://blog.csdn.net/welcome_xu/article/details/7650680 IplImage结构详细分析   IplImage 结构解读: typedef struct _IplImage { int nSize; /* IplImage大小 */ int ID; /* 版本 (=0)*/ int nChannels; /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */ int alphaChannel; /* 被OpenCV忽略 */ int…
转载:http://blog.csdn.net/yang_xian521/article/details/6967515 PS:很多时候,我们并不需要特别精通某个理论,而且有的时候即便你非常精通,但是当你真正去用它时,也会错误百出. 也就是说,要做到会用(这是终极目标),出现问题时,能够快速解决就ok了.对理论的熟悉,可以通过简单的实例来加深. 最厉害的,往往是那些深入浅出的人... openCV中贝叶斯分类器相关的API及其用法举例 openCV中与贝叶斯分类器相关的API函数有以下几个: (…
三种匹配算法比较 BM算法: 该算法代码: view plaincopy to clipboardprint? CvStereoBMState *BMState = cvCreateStereoBMState();   int SADWindowSize=15;    BMState->SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 9;   BMState->minDisparity = 0;   BMState->numb…
Meanshift(均值漂移)是一种在一组数据的密度分布中寻找局部极值的稳定的方法.Meanshift不仅能够用于图像滤波,视频跟踪,还能够用于图像切割. 通过给出一组多维数据点,其维数是(x,y,r,g,b),均值漂移能够用一个窗体扫描空间来找到数据密度最大的区域,能够理解为数据分布最集中的区域. 在这里须要注意,因为空间位置(也就是上面的x和y)的变化范围与颜色的变化范围(上面的r,g,b)有极大的不同,所以,meanshift对这两个维数要採用不同的窗体半径.在opencv自带的means…
SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最经常使用的是用于分类,只是SVM也能够用于回归,我的实验中就是用SVM来实现SVR(支持向量回归). 对于功能这么强的算法,opencv中自然也是有集成好了,我们能够直接调用.OpenCV中的SVM算法是基于LibSVM软件包开发的,LibSVM是台湾大学林智仁(Lin Chih-Jen)等开发设计的一个简单.易于使用和高速有效的SVM模式识别与回归的软件包. 网上讲opencv中SVM使用的文章有非常多,但讲SVM參数优化的文章却…
经过2天的努力终于算是大概弄清楚了opencv中的vs框架是大概是如何工作的了,下面贴一下我自己写的代码注释.非常详细.对初学者有帮助.尤其详细分析了RunBlobTrackingAuto()函数,在看注释之前应该首先大概了解一下 Blob Tracking Tests和Blob Tracking Modules的说明文档.这样比较容易理解.说明文档的位置在  opencv的安装位置的opencv\doc\vidsurv 代码注释为本人原创,转载请注明原为地址:http://blog.csdn.…
1.下面第一章图是一位美女图像,和其他数据一样图像在计算机中也是以二进制存储,下面第二张图 2.在摄像头眼里一幅图像就是一个矩阵或者说是二维数组,数组元素是像素值 3.opencv中以Mat对象表示图像的数据结构 -------lpllmage是从2001年opencv发布之后就一直存在,是c语言表示的数据结构,需要开发者自己分配和管理内存,对大型程序使用它容易导致内存泄漏问题. -------Mat对象是opencv2.0之后引进的图像数据结构,自动分配内存,不存在内存泄漏问题,是面向对象的数…
一.K近邻 有两个类,红色.蓝色.我将红色点标记为0,蓝色点标记为1.还要创建25个训练数据,把它们分别标记为0或者1.Numpy中随机数产生器可以帮助我们完成这个任务 import cv2 import numpy as np import matplotlib.pyplot as plt # 包含25个已知/训练数据的(x,y)值的特征集 trainData = np.random.randint(, , (, )).astype(np.float32) # 用数字0和1分别标记红色和蓝色…
一.数字图像存储概述 数字图像存储时,我们存储的是图像每个像素点的数值,对应的是一个数字矩阵. 二.Mat的存储 1.OpenCV1基于C接口定义的图像存储格式IplImage*,直接暴露内存,如果忘记释放内存,就会造成内存泄漏. 2.从OpenCV2开始,开始使用Mat类存储图像,具有以下优势: (1)图像的内存分配和释放由Mat类自动管理 (2)Mat类由两部分数据组成:矩阵头(包含矩阵尺寸.存储方法.存储地址等)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同,矩阵可以是不同的维数)…
一.数字图像存储概述 数字图像存储时,我们存储的是图像每个像素点的数值,对应的是一个数字矩阵. 二.Mat的存储 1.OpenCV1基于C接口定义的图像存储格式IplImage*,直接暴露内存,如果忘记释放内存,就会造成内存泄漏. 2.从OpenCV2开始,开始使用Mat类存储图像,具有以下优势: (1)图像的内存分配和释放由Mat类自动管理 (2)Mat类由两部分数据组成:矩阵头(包含矩阵尺寸.存储方法.存储地址等)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同,矩阵可以是不同的维数)…
java数据结构分析 此文章内容参考于:http://www.cnblogs.com/ysocean/ 一.数据结构总览图 1.数组 2.链表 3.栈 4.队列 5.二叉树 6.堆 7.散列 8.红黑树 二.结构分析 1.数组 数组是所有数据结构的'鼻祖';它可以表示一切的数据类型,但是后面会介绍很多其他的数据结构,就是因为数组还有许多局限性: ①.插入快,对于无序数组,即元素没有按照从大到小或者某个特定的顺序排列,只是按照插入的顺序排列.无序数组增加一个元素很简单,只需要在数组末尾添加元素即可…
opencv中图像的格式Mat 有图像的定义,图像深度.类型格式等,其中Mat的参数depth为深度,深度反应出图像颜色像素值: 关于数据的储存:(转) Mat_<uchar>对应的是CV_8U,Mat_<char>对应的是CV_8S,Mat_<int>对应的是CV_32S,Mat_<float>对应的是CV_32F,Mat_<double>对应的是CV_64F,对应的数据深度如下: • CV_8U - 8-bit unsigned intege…
前言 opencv中很多数据结构为了达到內存使用的最优化,通常都会用它最小上限的空间来分配变量,有的数据结构也会因为图像文件格式的关系而给予适当的变量,因此需要知道它们声明的空间大小来配置适当的变量.一 般标准的图片,为RGB格式它们的大小为8bits格式,范围为0~255,对一个int空间的类型来说实在是太小,整整浪费了24bits的空间,假设有个640*480的BMP文件空间存储內存,那整整浪费了640*480*3*(32-8)bits的內存空间,总共浪费了2.6MB!,也就是那 2.6MB…
一.读入图像 使用函数cv2.imread(filepath,flags)读入一副图片 filepath:要读入图片的完整路径 flags:读入图片的标志  cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道 import cv2 img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) 二…
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 22 直方图 22.1 直方图的计算,绘制与分析目标 • 使用 OpenCV 或 Numpy 函数计算直方图 • 使用 Opencv 或者 Matplotlib 函数绘制直方图 • 将要学习的函数有:cv2.calcHist(),np.histogram()原理 什么是直方图呢?通过直方图你可以对整幅图像的灰度分布有一个整体的了解.直方图的 x 轴是灰度值(0 到 255),y 轴是图片中具有同一个灰度值的点…