hive mapjoin优化】的更多相关文章

默认为10MB,如果大于该值不会执行mapjoin,hive语句中直接设置的mapjoin也不再起作用. 参考hive wiki把hive.auto.convert.join.noconditionaltask.size 修改大一些就ok. 官方解释为: hive.auto.convert.join.noconditionaltask * Default Value: true * Added In: 0.11.0 with HIVE-3784 (default changed to true…
1. mapjoin优化适合小表join大表 set hive.optimize.skewjoin=true; //有数据倾斜时开启负载均衡,默认false set hive.auto.convert.join=true; //设置自动选择MapJoin,默认是true set hive.auto.convert.join.noconditionaltask=true; //map-side join set hive.auto.convert.; //多大的表可以自动触发放到内层LocalTa…
1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,mi…
摘要 MapJoin是Hive的一种优化操作,其适用于小表JOIN大表的场景,由于表的JOIN操作是在Map端且在内存进行的,所以其并不需要启动Reduce任务也就不需要经过shuffle阶段,从而能在一定程度上节省资源提高JOIN效率   使用 方法一: 在Hive0.11前,必须使用MAPJOIN来标记显示地启动该优化操作,由于其需要将小表加载进内存所以要注意小表的大小 SELECT /*+ MAPJOIN(smalltable)*/ .key,value FROM smalltable J…
一.前述 本节主要描述Hive的优化使用,Hive的优化着重强调一个 把Hive SQL 当做Mapreduce程序去优化 二.主要优化点 1.Hive运行方式:本地模式集群模式 本地模式开启本地模式:set hive.exec.mode.local.auto=true;注意:hive.exec.mode.local.auto.inputbytes.max默认值为128M表示加载文件的最大值,若大于该配置仍会以集群方式来运行! 对于小表可以直接从从hdfs直接拿到本地计算 2.并行计算通过设置以…
https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合…
首先hive本质就是mapreduce,那么优化就从mapreduce开始入手. 然而mapreduce的执行快慢又和map和reduce的个数有关,所以我们先从这里下手,调整并发度. 关于map的优化: 1.调整block 作业会通过input的目录产生一个或者多个map任务.set dfs.block.size 因为没份数据都是block,而block的大小直接影响了split切分的分数,如果切分的更细一点,那么split个数会增加,那直接会影响map的增加,所以blocksize是直接影响…
常用调优测试语句 :    ①显示当前hive环境的参数值: set 参数名; 如:   hive> set mapred.map.tasks;mapred.map.tasks;   ②设置hive当前环境的参数值,但仅对本次连接有效 set 参数名 = 值; 如: hive> set mapred.map.tasks;mapred.map.tasks=2;   ④查看当前hive环境的所有参数值: set -v; ⑤重置当前hive环境的所有参数值: reset;     hive job优…
一.严格模式 通过设置以下参数开启严格模式: >set hive.mapred.mode=strict;[默认为nonstrict非严格模式] 查询限制: 1.对于分区表,必须添加where查询条件来对分区字段进行条件过滤. 2.order by语句必须包含limit输出限制. 3.限制执行笛卡尔积的查询. 二.Hive排序 1.order by:对于查询结果做全排序只允许有一个reduce处理,当数据量较大时,应慎用.严格模式下必须结合limit来使用. 2.sort by:对于单个reduc…
1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合并优化,使数据倾斜不成问题. count(distinct ),在数据量大的情况下,效率较低,如果是多count(…