C# 基于内容电影推荐项目(一)】的更多相关文章

从今天起,我将制作一个电影推荐项目,在此写下博客,记录每天的成果. 其实,从我发布 C# 爬取猫眼电影数据 这篇博客后, 我就已经开始制作电影推荐项目了,今天写下这篇博客,也是因为项目进度已经完成50%了,我就想在这一阶段停一下,回顾之前学到的知识. 一.主要为手机端 考虑到项目要有实用性,我选择了手机端,电脑端用的人有点少.然后就是在 xamarin.Forms 和 xamarin.android 这两个中做选择了,我选择了前者,因为xamarin.Forms 更接近WPF ,我也百度了一下,…
这个系列主要也是自己最近在研究大数据方向,所以边研究.开发也边整理相关的资料.网上的资料经常是碎片式的,如果要完整的看完可能需要同时看好几篇文章,所以我希望有兴趣的人能够更轻松和快速地学习相关的知识.我会尽可能用简单的方式去简介一些概念和算法,尽可能让没有工科基础的人也能大致了解. 简单讲解 基于内容的推荐算法是非常常见的推荐引擎算法. 这种算法常用于根据用户的行为历史信息,如评价.分享.点赞等行为并将这些行为整合计算出用户的偏好,再对计算推荐项目与用户偏好的相似度,将最相似的推荐给用户.例如在…
基于内容的推荐的基本推荐思路是:用户喜欢幻想小说,这本书是幻想小说,则用户有可能喜欢这本小说 两方面要求:(1)知道用户的喜好:(2)知道物品的属性 基于内容的推荐相比协同过滤方法(个人观点):协同过滤用到了大量用户的群体行为特征,两个特点,(1)要大量用户,(2)除了用户的行为之外,不需要其他信息:基于内容的推荐,需要用户和物品的额外信息,如:用户喜好.物品属性等等,但是不需要存储.处理大量的用户数据. 基于内容的推荐和基于知识的推荐没有明确界限,两者区别:前者更侧重于提取物品属性,后者更侧重…
https://blog.csdn.net/qq_32690999/article/details/77434381 因为开发了一个新闻推荐系统的模块,在推荐算法这一块涉及到了基于内容的推荐算法(Content-Based Recommendation),于是借此机会,基于自己看了网上各种资料后对该分类方法的理解,用尽量清晰明了的语言,结合算法和自己开发推荐模块本身,记录下这些过程,供自己回顾,也供大家参考~ 目录 一.基于内容的推荐算法 + TFIDF 二.在推荐系统中的具体实现技巧 正文 一…
基于内容的推荐通常是给定一篇文档信息,然后给用户推荐与该文档相识的文档.Lucene的api中有实现查询文章相似度的接口,叫MoreLikeThis.Elasticsearch封装了该接口,通过Elasticsearch的More like this查询接口,我们可以非常方便的实现基于内容的推荐. { "more_like_this" : { "fields" : ["title", "content"], "lik…
ElasticSearch java API-使用More like this实现基于内容的推荐 基于内容的推荐通常是给定一篇文档信息,然后给用户推荐与该文档相识的文档.Lucene的api中有实现查询文章相似度的接口,叫MoreLikeThis.Elasticsearch封装了该接口,通过Elasticsearch的More like this查询接口,我们可以非常方便的实现基于内容的推荐. 先看一个查询请求的json例子: { "more_like_this" : {"f…
环境: Hadoop1.x,CentOS6.5,三台虚拟机搭建的模拟分布式环境 数据:下载的amazon产品共同采购网络元数据(需FQ下载)http://snap.stanford.edu/data/amazon-meta.html 方案目标: 从数据中提取出每个用户买过哪些商品,根据买过的商品以及商品之间的相关性来对用户进行推荐商品 下载的数据如下所示为单位 Id: 1ASIN: 0827229534 title: Patterns of Preaching: A Sermon Sampler…
这是本人在cousera上学习机器学习的笔记,不能保证其正确性,慎重參考 看完这一课后Content Based Recommendations 后自己用java实现了一下 1.下图是待处理的数据,代码使用数据和下图一样: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdHpoNDc2/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt=&quo…
本文参考http://blog.csdn.net/zdy0_2004/article/details/43896015译文以及原文file:///F:/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/Recommending%20music%20on%20Spotify%20with%20deep%20learning%20%E2%80%93%20Sander%20Dieleman.html 本文是比利时根特大学(Ghent University)的Reservoir …
数据集: https://grouplens.org/datasets/movielens/ ml-latest-small 协同过滤算法理论基础 https://blog.csdn.net/u012995888/article/details/79077681 相似度计算主要有三个经典算法:余弦定理相似性度量.欧氏距离相似度度量和杰卡德相似性度量.下面分别进行说明: 余弦定理相似性度量       三角形余弦定理公式:,由该公式可知角A越小,bc两边越近.当A为0度时,bc两边完全重合. 当b…
目录 1. 前言 2. 构建画像 3. 内容召回的算法 1. 前言 在之前总结过协同过滤的召回通路后,今天我们来总结下召回策略中的重头戏:基于内容的召回通路,也即我们常说的基于标签的召回.这里就要涉及两个一直很流行的词汇:用户画像User Profile和物品画像Item Profile. 说回推荐系统,它的使命就是,要在用户(User)和物品(Item)之间建立连接.那么用户画像和物品画像是否是推荐系统的"银弹"呢?答案肯定不是,但也不能说用户画像一无是处. 用户画像只是推荐系统构建…
九.基于内容的电影推荐 在基于内容的推荐系统中,我们得到的关于内容的信息越多,算法就会越复杂(设计的变量更多),不过推荐也会更准确,更合理. 本次基于评分,提供一个3阶段的MR解决方案来实现电影推荐. 1.找出各个电影的评分人总数 2.对于每个电影对A和B,找出所有同时对A和B评分的人. 3.找出每两个相关电影之间的关联.在这个阶段,我使用3个不同的关联度算法(pearson,cosine,jaccard)一般要根据具体的数据需求来选择关联度算法. 数据的输入格式: 第一阶段转化完之后: 经过M…
推荐算法有基于协同的Collaboration Filtering:包括 user Based和item Based:基于内容 : Content Based 协同过滤包括基于物品的协同过滤和基于用户的协同过滤,本文基于电影评分数据做基于商品的推荐 查看数据u.data 主要用到前3列分别指 用户编号user_id.电影编号item_id.用户对电影的打分score 这个文件主要用户构建物品的相似度矩阵 ubuntu@ubuntu-2:~/workspace/jupyter_project/re…
协同过滤包括基于物品的协同过滤和基于用户的协同过滤,本文基于电影评分数据做基于用户的推荐 主要做三个部分:1.读取数据:2.构建用户与用户的相似度矩阵:3.进行推荐: 查看数据u.data 主要用到前3列分别指 用户编号user_id.电影编号item_id.用户对电影的打分score 这个文件构建item-用户的倒排表用于构建用户和用户的相似度矩阵,构建用户-item的倒排表用于推荐 ubuntu@ubuntu-2:~/workspace/jupyter_project/recommendat…
#基于用户的推荐类算法 from math import sqrt #计算两个person的欧几里德距离 def sim_distance(prefs,person1,person2): si = {} for item in prefs(person1): if item in prefs(person2): si[item] = 1 if len(si) == 0: return 0 sum_of_squares = sum([pow(prefs[person1][item]-prefs[p…
数据可视化 1.数据的分析与统计 使用sql语句进行查询,获取所有数据的概述,包括电影数.电影类别数.人数.职业种类.点评数等. 2.构建数据可视化框架 这里使用了前端框架Bootstrap进行前端的开发,后台使用PHP进行开发. 以下是运行界面: 图1 登录界面 图2 点评电影展示 图3 电影推荐…
港真,自己一直非常希望做算法工程师,所以自己现在开始对现在常用的大数据算法进行不断地学习,今天了解到的算法,就是我们生活中无处不在的推荐系统算法. 其实,向别人推荐商品是一个很常见的现象,比如我用了一个好的商品,向朋友安利之类的.在以前广告系统不发达的时候,我们也是靠口口相传来进行商品的推广.那么为什么,现在推荐系统变的非常重要了呢?,在以前,我们的商品不像现在的物品一样琳琅满目,我们有时间,可以把商品都浏览一遍在进行选择,因为我们都想选择所有商品中最好的,而现在,由于资源的众多,我们不会用大把…
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Feb  7 14:38:33 2017 电影推荐分析: 使用 亲和性分析方法 基于 Apriori算法 推荐电影 @author: yingzhang """ #读取数据集: http://grouplens.org/datasets/movielens/ import os #使用pandas加载数据 impor…
 发布于 2014-06-30 作者 刘 天栋 对于架设可协同作业的网站平台, Windows  Azure有着得天独厚的优势.这不仅在于其强大的扩展性和安全性,更重要的是 Azure 平台对各类网站,内容管理以及项目协同管理方案的支持与开放.各类开源技术,均可以稳健的运行在这个强大的平台上,并且不断延伸扩展. 在这一周的博文中,我想向大家介绍 VM Depot 中已经包含的各类相关解决方案.和往常一样,让我来为您交流点评其中的几个经典镜像,希望您能有所收获. //社交媒体与内容管理平台//…
本文将使用 SparkML 来构建推荐引擎. 推荐引擎算法大致分为 基于内容的过滤.协同过滤.矩阵分解,本文将使用基于属于矩阵分解的 最小二乘法 算法来构建推荐引擎. 对于推荐引擎模块这里将分为两篇文章,第一篇文章主要是以实现推荐功能为主,第二篇文章主要是对模型进行评估 文章将按照以下章节来进行书写: 需求分析.获取数据.提取特征.训练模型.使用模型(推荐) 一.需求分析假设我们是 MovieStream 团队,专门为用户提供在线电影和电视节目的内容服务. 现在我们有个需求::给用户推荐电影!…
推荐模型 推荐模型的种类分为: 1.基于内容的过滤:基于内容的过滤利用物品的内容或是属性信息以及某些相似度定义,来求出与该物品类似的物品. 2.协同过滤:协同过滤是一种借助众包智慧的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相似度的定义. 在基于用户的方法的中,如果两个用户表现出相似的偏好(即对相同物品的偏好大体相同),那就认为他们的兴趣类似. 同样也可以借助基于物品的方法来做推荐.这种方法通常根据现有用户对物品的偏好或是评级情况,来计算物品之间的某种相似…
利用电影观看记录数据,进行电影推荐. 目录 利用电影观看记录数据,进行电影推荐. 准备 1.任务描述: 2.数据下载 3.部分数据展示 实操 1.设置输入输出路径 2.配置spark 3.读取Rating文件 4.读取movie文件 5.保存结果 6.结果 你可能会遇到的问题 问题一:结果输出目录已存在 问题二:缺少hadoop环境变量 准备 1.任务描述: 在推荐领域有一个著名的开放测试集,下载链接是:http://grouplens.org/datasets/movielens/,该测试集包…
本文主要是对如何做开源项目的一些思考. 前文回顾: <Vue3 来了,Vue3 开源商城项目重构计划正式启动!> <一个基于 Vue 3 + Vant 3 的开源商城项目> 关于 newbee-mall-vue3-app 这个开源项目的开发背景和详细介绍之前都已经介绍过,可以在上述两篇文章中查看. 仓库 Star 数量破千,记录一下 新蜂商城 Vue3 版本已经开源了 3 个多月左右的时间,在 2020 年 11 月 9 日把所有源码放到开源仓库,2021 年 2 月 8 日,仓库…
基于内容的图像检索技(CBIR)术相术介绍 kezunhai@gmail.com http://blog.csdn.net/kezunhai 近20年来,计算机与信号处理领域如火如荼地发展着,随着普通计算机的性能不断地提高,人们对计算机处理信息的能力及要求不断地提高.传统的基于文本检索技术已经难以满足人们的需求,图片作为人们对周围世界的感知媒介,以图片为基本输入,从网络海量数据库中检索所需的信息已具有了强大的研究价值和商业应用.“有图有真相”和“一图胜过千言万语”已不再是虚夸,以图像为主的多媒体…
后来发现了一种更加方便的创建方式,即第一步不选择Create from archetype,创建完毕后打开Project Structure-Modules,然后添加Web,但是注意添加的Web里面的参数要修改一下,使得默认的web变成webapp(其实不改也没啥关系),然后将webapp置于src/main/文件夹中,而web.xml的路径也要改一下,这么做可以省掉很多步骤,比如创建java文件夹及设置Sources,和改web.xml的2.3为3.1等等,不过仍然要将默认的1.5的JDK变成…
NMF是很久以前学的,基本快忘没了,昨天YX提出来一个关于NMF(同音同字不同义)的问题,才又想起来. 自己的学习笔记写的比较乱,好在网上资料多,摘了一篇,补充上自己笔记的内容,留此助记. NMF概念出现的比较早,差不多在电脑还没有开始繁荣起来,NMF及相关的一些算法已经很成熟了.NMF用在电影推荐.商品推荐也并不是很适合,现在大多使用SVD之类的算法.不过这篇只是学习的记录,有个例子总比枯燥的啃概念好的多. 场景 让我们假设一个场景. 相像当前这个档期,有10部电影正在上映,我们把它们放到一个…
基于原型的团队项目需求调研与分析 本项目是一个家教系统的实现,随着时代的进步,现今已经进入信息技术时代,越来越多的人注意到了教育的重要性.家长对于孩子的学习提高注意力,大家都不想自己的孩子输在起跑线上,因此为了让孩子更优秀,家长们会对孩子任何一门不优秀的功课进行辅导.然而,家长并没有那么多时间精力,因此,家教就成了很好的帮手.如何能在茫茫人海中寻找到一位让家长信任的家教老师,无疑是最重要的.本平台注意汇聚了大量的英才,需要寻找家教的人可以根据平台所提供的相关信息来寻找所需要的老师.另外,虽然,此…
"协同过滤"是推荐系统中的常用技术,按照分析维度的不同可实现"基于用户"和"基于产品"的推荐. 以下是利用python实现电影推荐的具体方法,其中数据集源于<集体编程智慧>一书,后续的编程实现则完全是自己实现的(原书中的实现比较支离.难懂). 这里我采用的是"基于产品"的推荐方法,因为一般情况下,产品的种类往往较少,而用户的数量往往非常多,"基于产品"的推荐程序可以很好的减小计算量. 其实基本的…
转自http://blog.csdn.net/sinat_33741547/article/details/53002524 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思想是将用户行为数据表示为一系列的二元组,每一个二元组(u,i)代表用户u对物品i产生过行为,这样便可以将这个数据集表示为一个二分图. 假设我们有以下的数据集,只考虑用户喜不喜欢该物品而不考虑用户对物品的喜欢程度, 其中用户user=[A,B,C],物品item=[a,b,c],用户和物品有以下的关系…