郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduction 1 Reinforcement learning with a network of spiking agents 2 Related Work 2.0.1 Hedonism 2.0.2 Learning by reinforcement in spiking neural network…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Summary 众所周知,化学突触传递是不可靠的过程,但是这种不可靠的函数仍然不清楚.在这里,我考虑这样一个假设,即大脑利用突触传递的随机性来进行学习,这类似于达尔文进化论中的基因突变.如果突触是“享乐主义的”,则可能发生这种情况,通过增加它们的囊泡释放或失败的概率来响应全局奖励信号,这取决于立即采取哪种动作.享乐主义突触通过计算对平均奖励梯度的随机近似来学习.它们与突触动态(例如短期促进和抑制)以及树突整合和动作电位生成的复杂性兼容…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Contents: ABSTRACT 1. Introduction 2. Biological background 2.1. Spiking neuron models 2.2. Synaptic plasticity 2.2.1. Unsupervised learning 2.2.2. Supervised learning 2.2.3. Reinforcement learning 2.2.4. Delay learning…
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "s…
http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural Networks  Published: 09 Oct 2015  Category: deep_learning Tutorials Popular Training Approaches of DNNs — A Quick Overview https://medium.com/@asjad/p…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记1 Link: Hinton的CSC321课程笔记2 一年后再看课程,亦有收获,虽然看似明白,但细细推敲其实能挖掘出很多深刻的内容:以下为在线课程以及该笔记的课程重难点总结. Lecture 01 增强学习: (这是ng的拿手好戏,他做无人直升机可是做了好久)增强学习的输出是一个动作或者一系列的动作,通过与实际的场合下的环境互动来决定动作,增强学习的…
Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely easy with high-quality libraries such as Torch and Theano. These libraries are really helpful for rapidly prototyping deep learning models even witho…
Neural Networks and Deep Learning This is the first course of the deep learning specialization at Coursera which is moderated by moderated by DeepLearning.ai. The course is taught by Andrew Ng. Introduction to deep learning Be able to explain the maj…
1,概述 模型量化属于模型压缩的范畴,模型压缩的目的旨在降低模型的内存大小,加速模型的推断速度(除了压缩之外,一些模型推断框架也可以通过内存,io,计算等优化来加速推断). 常见的模型压缩算法有:量化,剪枝,蒸馏,低秩近似以及紧凑模型设计(如mobileNet)等操作.但在这里有些方法只能起到缩减模型大小,而起不到加速的作用,如稀疏化剪枝.而在现代的硬件设备上,其实更关注的是模型推断速度.今天我们就讲一种既能压缩模型大小,又能加速模型推断速度:量化. 量化一般可以分为两种模式:训练后的量化(po…
最近花了半个多月把Mchiael Nielsen所写的Neural Networks and Deep Learning这本书看了一遍,受益匪浅. 该书英文原版地址地址:http://neuralnetworksanddeeplearning.com/ 回顾一下这本书主要讲的内容 1.使用神经网络识别手写数字 作者从感知器模型引申到S型神经元.然后再到神经网络的结构.并用一个三层神经网络结构来进行手写数字识别, 作者详细介绍了神经网络学习所使用到梯度下降法,由于当训练输入数量过大时,学习过程将变…