D7 割点 割边 强连通分量】的更多相关文章

今天几道是模板题: 第一道:(粘不了链接呜呜呜) 题目描述 n个城市之间有通讯网络,每个城市都有通讯交换机,直接或间接与其它城市连接.因电子设备容易损坏,需给通讯点配备备用交换机. 但备用 交换机数量有限,不能全部配备,只能给部分重要城市配置. 于是规定:如果某个城市由于交换机损坏,不仅本城市通讯中断,还造成其它城市通讯中断,则配备备 用交换机. 请你根据城市线路情况,计算需配备备用交换机的城市个数,及需配备备用交换机城市的编号. 友情提示:图论常见的坑点,重边,自环,还有对本题来说的不连通 输…
题目链接:http://poj.org/problem?id=1523 SPF:A Single Point of Failure也就是割点(一个点导致网络之间的不连通),由于给出的图是无向图,所以只要连通就一定强连通.要求连通分支的数量就是要求请联通分支的数量,我们可想到tarjan求强连通的步骤,只要一群结点的low值相同他们就是属于同一个SCC(Strongly Connected Component),所以我们只要对于每一个割点,记录一下这个点所到的其他结点的不相同的low值的数量,就是…
Tarjan求强连通分量 在一个有向图中,如果某两点间都有互相到达的路径,那么称中两个点强联通,如果任意两点都强联通,那么称这个图为强联通图:一个有向图的极大强联通子图称为强联通分量.   算法可以在 的时间内求出一个图的所有强联通分量. 表示进入结点 的时间 表示从 所能追溯到的栈中点的最早时间 如果某个点 已经在栈中则更新  否则对 进行回溯,并在回溯后更新  #include<iostream> #include<cstdlib> #include<cstdio>…
tarjan算法是在dfs生成一颗dfs树的时候按照访问顺序的先后,为每个结点分配一个时间戳,然后再用low[u]表示结点能访问到的最小时间戳 以上的各种应用都是在此拓展而来的. 割点:如果一个图去掉某个点,使得图的连通分支数增加,那么这个点就是割点 某个点是割点,当且仅当这个点的后代没有连回自己祖先的边.即low[v] >= dfn[u]     , v是u的后代 需要注意的是根结点的特判,因为根结点没有祖先,根结点是割点,当且仅当根结点有两个以上的儿子. 问题:重边对该算法有影响吗?没有影响…
这篇文章是从网络上总结各方经验 以及 自己找的一些例题的算法模板,主要是用于自己的日后的模板总结以后防失忆常看看的, 写的也是自己能看懂即可. tarjan算法的功能很强大, 可以用来求解强连通分量,缩点,桥,割点,LCA等,日后写到相应的模板题我就会放上来. 1.强连通分量(分量中是任意两点间都可以互相到达) 按照深度优先遍历的方式遍历这张图. 遍历当前节点所出的所有边.在遍历过程中: ( 1 ) 如果当前边的终点还没有访问过,访问. 回溯回来之后比较当前节点的low值和终点的low值.将较小…
Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) (3)         最近公共祖先 今天主要给未来的自己讲解一下前两个应用,让未来的自己不会向现在的自己一样又忘了Tarjan怎么写.熟悉DFS的话,理解起来会简单很多. (1)         有向图的强联通分量 首先解释Tarjan中几个比较重要的值 DFN[i] : 节点i被访问到的次序 L…
概要: 各种dfs时间戳..全是tarjan(或加上他的小伙伴)无限膜拜tarjan orzzzzzzzzz 技巧及注意: 强连通分量是有向图,双连通分量是无向图. 强连通分量找环时的决策和双连通的决策十分相似,但不完全相同. 强连通分量在if(FF[v])后边的else if还要特判是否在栈里,即vis[v],然后才更新LL[u] 割点和双连通分量因为是无向图所以要判个fa,可以在dfs时维护个fa参数 割点如果要求分割的分量,那么就是这个节点对他的子树是割点的数目+1. 割点不需要栈维护但是…
一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边…
基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数.…
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2194090a96bbed2db1351de8.html 基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连…