论文标题:Action recognition based on 2D skeletons extracted from RGB videos 发表时间:02 April 2019 解决问题/主要思想:来源:谷歌最新论文推荐,来自全球排名大概550名的蒙斯大学 使用openPose对图像提取关键点,然后计算关键点的信息,分成三个矩阵,输入网络训练,从而对动作进行分类 成果/优点:  the highest accuracy which is 83.317% with ResNet152 in c…
论文标题:Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descriptors 来源/作者机构情况: 卧龙岗大学(世界排名230~),第一次听说这个学校.竟然是在澳大利亚的一个学校.好吧,华人果然全球了 李老师是本硕都是浙大的,李老师个人链接如下: https://www.uow.edu.au/~wanqing/#UOWActionDatasets 解决问题/主要思想贡献:…
要读的论文: https://www.cnblogs.com/hizhaolei/p/10565405.html 骨架动作识别论文汇总 https://blog.csdn.net/bianxuewei1238/article/details/84936883 AAAI 2018 行为识别论文概览 https://zhuanlan.zhihu.com/p/34322114 已经阅读的论文: 2019年: Action recognition based on 2D skeletons extrac…
转自:http://blog.csdn.net/kezunhai/article/details/50176209 ================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/33272629/answer/60279003 有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门…
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:45:13  研究背景和动机: 行人动作识别(Human Action Recognition)主要从多个模态的角度来进行研究,即:appearance,depth,optical-flow,以及 body skeletons.这其中,动态的人类骨骼点 通常是最具有信息量的,且能够和其他模态进行互补.…
CVPR2019 1.An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition 作者:Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, Tieniu Tan 论文链接:https://arxiv.org/abs/1902.09130 2.Improving the Performance of Unimodal Dynami…
================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/33272629/answer/60279003 有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门弄斧说下video里主流的: Deep Learning之前最work的是INRIA组的Improved Dense…
( 这篇博文为原创,如需转载本文请email我: leizhao.mail@qq.com, 并注明来源链接,THX!) 本文主要分享了一篇来自CVPR 2018的论文,A Closer Look at Spatiotemporal Convolutions for Action Recognition.这篇论文主要介绍了Video Classification.Action Recognition方面的工作,包括2D.3D以及混合卷积等多种方法,最重要的贡献在于提出(2+1)D的结构. 1. R…
Skeleton-Based Action Recognition with Directed Graph Neural Network 摘要 因为骨架信息可以鲁棒地适应动态环境和复杂的背景,所以经常被广泛应用在动作识别任务上,现有的方法已经证实骨架中的关键点和骨头信息对动作识别任务非常有用.然而如何将两种类型的数据最大化地利用还没有被很好地解决. 作者将骨架数据表示成一个有向非循环图(Directed acyclic graph),该图基于自然人体的节点和骨骼的动力学依赖. 这个新颖的图结构用…
Collaborative Spatioitemporal Feature Learning for Video Action Recognition 摘要 时空特征提取在视频动作识别中是一个非常重要的部分.现有的神经网络模型要么是分别学习时间和空间特征(C2D),要么是不加控制地联合学习时间和空间特征(C3D). 作者提出了一个新颖的neural操作,它通过在可学习的参数上添加权重共享约束来将时空特征encode collaboratively. 特别地,作者沿着体积视频数据的三个正交视图进行…