Spark MLib 数据类型】的更多相关文章

1.  MLlib Apache Spark's scalable machine learning library, with APIs in Java, Scala and Python. 2.   数据类型 本地向量,标注点,本地矩阵,分布式矩阵 3. 本地向量 Local Vector 稠密向量 dense        一个double数组,例如 (1.0, 0.0, 0.0, 0.0, 3.0) 稀疏向量 sparse       两个并行的数组(indices和values),例如…
声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索. 先来看两个函数: 1.  拟合函数:为参数向量,h(θ)就是通过参数向量计算的值,n为参数的总个数,j代表的是一条记录里的一个参数  …
Spark mlib的本地向量有两种: DenseVctor :稠密向量 其创建方式 Vector.dense(数据) SparseVector :稀疏向量 其创建方式有两种: 方法一:Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组) 方法二:Vector.sparse(向量长度,(索引,数值),(索引,数值),(索引,数值),...(索引,数值)) 示例: 比如向量(1,0,3,4)的创建有三种方法: 稠密向量:直接Vectors.dense(1,0,3,4) 稀疏…
Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水线. graph LR A[转换器] --> B(估计器) B --> C(评估器) C --> D[模型] 首先欢迎大家Start本人关于机器学习的学习仓库,不仅仅包含了Spark ML还包括python下的sklearn等主流库. 一.基础使用 接下来我们将以一个简单的例子为基础整体介绍…
4. 假设检验 基础回顾: 假设检验,用于判断一个结果是否在统计上是显著的.这个结果是否有机会发生. 显著性检验 原假设与备择假设 常把一个要检验的假设记作 H0,称为原假设(或零假设) (null hypothesis) 与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 拟合优度Goodness of Fit,是指回归直线对观测值的拟合程度. 对非线性方程: (1)计算残差平方和 Q =∑(y-y*)2 和 ∑y2 ,其中,y 代表的是实测值,y* 代表的…
1.  概括统计 summary statistics MLlib支持RDD[Vector]列式的概括统计,它通过调用 Statistics 的 colStats方法实现. colStats返回一个 MultivariateStatisticalSummary 对象,这个对象包含列式的最大值.最小值.均值.方差等等. import org.apache.spark.mllib.linalg.Vector import org.apache.spark.mllib.stat.{Multivaria…
Spark目前支持三种开发语言:Scala.Java.Python,目前我们大量使用Python来开发Spark App(Spark 1.2开始支持使用Python开发Spark Streaming App,我们也准备尝试使用Python开发Spark Streaming App),在这期间关于数据类型的问题曾经困扰我们很长时间,故在此记录一下心路历程.   Spark是使用Scala语言开发的,Hadoop是使用Java语言开发的,Spark兼容Hadoop Writable,而我们使用Pyt…
    MLlib支持几种数据类型:本地向量(local vectors),和存储在一个简单机器中的矩阵(matrices),以及由一个或多个RDDs组成的分布式矩阵. 1,本地向量(Local Vector)     一个本地向量是由从0开始的整型下标和double型值组成,存储在一个单机节点上.MLlib支持两种类型的本地向量:密集的和稀疏的.密集向量用一个double数组来存储值.而一个稀疏向量由两个并列的数组,下表和值组成.例如,一个向量(1.0, 0.0, 3.0)可以由密集的数组[1…
spark的机器学习库,包含常见的学习算法和工具如分类.回归.聚类.协同过滤.降维等使用算法时都需要指定相应的数据集,下面为大家介绍常用的spark ml 数据类型.1.本地向量(Local Vector)存储在单台机器上,索引采用0开始的整型表示,值采用Double类型的值表示.Spark MLlib中支持两种类型的矩阵,分别是密度向量(Dense Vector)和稀疏向量(Spasre Vector),密度向量会存储所有的值包括零值,而稀疏向量存储的是索引位置及值,不存储零值,在数据量比较大…
spark mlib中2种局部向量:denseVector(稠密向量)和sparseVector(稀疏向量) denseVector向量的生成方法:Vector.dense() sparseVector向量的生成方法: (1):Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组) (2):Vector.sparse(向量长度,(索引,数值),(索引,数值),...(索引,数值)) 例子:向量(5.2,0.0,5.5) 稠密向量:Vector.dense(5.2,0.0,5…
1.编写给ResultSet添加spark的schema成员及DF(DataFrame)成员 /* spark.sc对象因为是全局的,没有导入,需自行定义 teradata的字段类型转换成spark的数据类型 */ import java.sql.{ResultSet, ResultSetMetaData} import org.apache.spark.sql.types._ import org.apache.spark.sql.{DataFrame, Row} object addData…
spark集群中的节点可以只处理自身独立数据库里的数据,然后汇总吗? 修改 我将spark搭建在两台机器上,其中一台既是master又是slave,另一台是slave,两台机器上均装有独立的mongodb数据库.我是否可以让它们只统计自身数据库的内容,然后将结果汇总到一台服务器上的数据库里?目前我的代码如下,但是最终只统计了master里的数据,另一个worker没有统计上. val config = new Configuration() //以下代码表示只统计本机数据库上的数据,猜测问题可能…
不多说,直接上干货! 说在前面的话 此笔,对于仅对于Hadoop和Spark初中学者.高手请忽略! 1 Java基础: 视频方面:          推荐<毕向东JAVA基础视频教程>.学习hadoop不需要过度的深入,java学习到javase,在Java虚拟机的内存管理.以及多线程.线程池.设计模式.并行化多多理解实践即可.     书籍方面: 推荐李兴华的<java开发实战经典> 2 Linux基础:     视频方面: (1)马哥的高薪Linux视频课程-Linux入门.…
说在前面的话 此笔,对于仅对于Hadoop和Spark初中学者.高手请忽略! 1 Java基础: 视频方面:          推荐<毕向东JAVA基础视频教程>.学习hadoop不需要过度的深入,java学习到javase,在Java虚拟机的内存管理.以及多线程.线程池.设计模式.并行化多多理解实践即可.     书籍方面: 推荐李兴华的<java开发实战经典> 2 Linux基础:     视频方面: (1)马哥的高薪Linux视频课程-Linux入门. (2)兄弟连的新版Li…
1.1 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用 它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢.所有Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快 1.易整合 2.统一的数据访问方式 3.兼容Hive…
1 Java基础: 视频方面:          推荐<毕向东JAVA基础视频教程>.学习hadoop不需要过度的深入,java学习到javase,在Java虚拟机的内存管理.以及多线程.线程池.设计模式.并行化多多理解实践即可.     书籍方面: 推荐李兴华的<java开发实战经典> 2 Linux基础:     视频方面: (1)马哥的高薪Linux视频课程-Linux入门. (2)兄弟连的新版Linux视频教程. (3)老段的讲解鸟哥Linux基础+私房菜. (4)老男孩的…
第1章 Spark SQL概述 1.1 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用. Hive是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢. 所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快! 1)易整合…
<Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足,中文译版评分8.4,评论一片好评,有点意思.我倒觉得这本书可以作为官方文档的一个补充,刷完后基本上对Spark的一些基本概念.码简单的程序是没有问题的了.这本书有一个好处是它是用三门语言写的,Python/Java/Scala,所以适用性很广,我的观点是,先精通一门语言,再去学其他语言.由于我工作中比较常用…
这一两年Spark技术很火,自己也凑热闹,反复的试验.研究,有痛苦万分也有欣喜若狂,抽空把这些整理成文章共享给大家.这个系列基本上围绕了Spark生态圈进行介绍,从Spark的简介.编译.部署,再到编程模型.运行架构,最后介绍其组件SparkSQL.Spark Streaming.Spark MLib和Spark GraphX等.文章内容的整理一般是先介绍原理,随后是实战例子,由于面向的是入门读者,在实战中多截图,还请谅解.为了大家实验方便,在这里把实验相关的测试数据和安装包放在百度盘提供下载 …
spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分类.回归.聚类.协同过滤.降维等,同时还包括底层的优化原语和高层的管道API. MLllib目前分为两个代码包: spark.mllib 包含基于RDD的原始算法API. spark.ml 则提供了基于DataFrames 高层次的API,可以用来构建机器学习管道. 我们推荐您使用spark.ml,…
年9月9日发布了1.5版本,该版本由230+开发人员和80+机构参与,修复了1400多个补丁,该版本可以通过 http://spark.apache.org/downloads.html进行下载.Spark1.5中最主要的修改内容是为了提升Spark性能.可用性和操作稳定性,特别在该版本中引入了Project Tungsten(钨丝项目),该项目通过对几个底层框架构建的优化进一步Spark性能.另外在该版本中添加了Streaming组件.机器学习算法和新的SparkR接口等.具体内容如下: 性能…
使用Spark SQL的基础是“注册”(Register)若干表,表的一个重要组成部分就是模式,Spark SQL提供两种选项供用户选择:   (1)applySchema     applySchema的方式需要用户编码显示指定模式,优点:数据类型明确,缺点:多表时有一定的代码工作量.   (2)inferSchema     inferSchema的方式无需用户编码显示指定模式,而是系统自动推断模式,代码比较简洁,但既然是推断,就可能出现推断错误(即与用户期望的数据类型不匹配的情况),所以我…
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession 创建 DataFrames 无类型的Dataset操作 (aka DataFrame 操作) Running SQL Queries Programmatically 全局临时视图 创建Datasets RDD的互操作性 使用反射推断Schema 以编程的方式指定Schema Aggregatio…
Spark 一种基于内存的快速.通用.可扩展的大数据分析引擎: 内置模块: Spark Core(封装了rdd.任务调度.内存管理.错误恢复.与存储系统交互): Spark SQL(处理结构化数据).Spark Streaming(对实时数据进行流式计算) . Spark Mlib(机器学习程序库包括分类.回归.聚合.协同过滤等).Spark GraghX(图计算):独立调度器.Yarn.Mesos 特点: 快( 基于内存(而MR是基于磁盘).多线程模型(而mapReduce是基于多进程的,每个…
这一两年Spark技术很火,自己也凑热闹,反复的试验.研究,有痛苦万分也有欣喜若狂,抽空把这些整理成文章共享给大家.这个系列基本上围绕了Spark生态圈进行介绍,从Spark的简介.编译.部署,再到编程模型.运行架构,最后介绍其组件SparkSQL.Spark Streaming.Spark MLib和Spark GraphX等.文章内容的整理一般是先介绍原理,随后是实战例子,由于面向的是入门读者,在实战中多截图,还请谅解.为了大家实验方便,在这里把实验相关的测试数据和安装包放在百度盘提供下载 …
什么是Spark 大数据计算框架 离线批处理 大数据体系架构图(Spark) Spark包含了大数据领域常见的各种计算框架:比如Spark Core用于离线计算,Spark SQL用于交互式查询,Spark Streaming用于实时流式计算,Spark MLib用于机器学习,Spark GraphX用于图计算 Spark主要用于大数据的计算,而Hadoop以后主要用于大数据的存储(比如HDFS.Hive.HBase)等,,以及资源调度(Yarn) Spark+hadoop的组合是大数据领域最热…
记录自己学习研究 Spark 的探索过程,为后续总结奠定基础. 本文代码研究以 Spark 2.3.0 源代码为基准,如果看本文,请阅读时,下载对应的 Spark 版本. 图1 伯克利的数据分析软件栈BDAS(Berkeley Data Analytics Stack) 这里要先说BDAS(伯克利数据分析栈),是伯克利大学的AMPLab打造的用于大数据的分析的一套开源软件栈,这其中包括了这两年火的爆棚的Spark(Spark Core.Spark SQL.Spark Streaming.MLLi…
本文基于<Spark 最佳实践>第6章 Spark 流式计算. 我们知道网站用户访问流量是不间断的,基于网站的访问日志,即 Web log 分析是典型的流式实时计算应用场景.比如百度统计,它可以做流量分析.来源分析.网站分析.转化分析.另外还有特定场景分析,比如安全分析,用来识别 CC 攻击. SQL 注入分析.脱库等.这里我们简单实现一个类似于百度分析的系统. 代码见 https://github.com/libaoquan95/WebLogAnalyse 1.模拟生成 web log 记录…
使用Spark SQL的基础是“注册”(Register)若干表,表的一个重要组成部分就是模式,Spark SQL提供两种选项供用户选择:   (1)applySchema     applySchema的方式需要用户编码显示指定模式,优点:数据类型明确,缺点:多表时有一定的代码工作量.   (2)inferSchema     inferSchema的方式无需用户编码显示指定模式,而是系统自动推断模式,代码比较简洁,但既然是推断,就可能出现推断错误(即与用户期望的数据类型不匹配的情况),所以我…
1.cassandra 准备 启动cqlsh, CQLSH_HOST=172.16.163.131 bin/cqlsh cqlsh>CREATE KEYSPACE productlogs WITH REPLICATION = { 'class' : 'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '2' } cqlsh>CREATE TABLE productlogs.logs ( ids uuid, a…