深度学习从12年开始打响,配置深度学习环境软件一直是一个头疼的问题,如何安装显卡驱动,如何安装CUDA,如何安装CUDNN:Ubuntu官方一直吐槽Nvidia显卡驱动有问题,网上大神也给出了关闭lightm巴拉巴拉之类的解决方法,有时候倒腾一星期也不见得安装成功,之前听一位师兄提起一种方法,然而在网上搜索也搜索不到,这里给出安装的教程,供大家参考 Ubuntu安装好,显卡插上去之后,一般的,配置pytorch,tensorflow,mxnet,caffe等深度学习环境需要做三件事情 1.安装N…
本来就对Linux不熟悉,经过几天惨痛的教训,参考了不知道多少篇文章,终于把环境装好了,每篇文章或多或少都有一些用,但没有一篇完整的能解决我安装过程碰到的问题,所以决定还是自己写一篇我安装过程的教程,有些参考的文章会给出原地址,比较大众的教程就没有给出了. 本文写于2018年7月27日,注意下时效性,有问题欢迎留言 1. 安装Ubuntu16.04 系统下载地址: http://releases.ubuntu.com/16.04/ 下载64位系统:ubuntu-16.04.4-desktop-a…
本来就对Linux不熟悉,经过几天惨痛的教训,参考了不知道多少篇文章,终于把环境装好了,每篇文章或多或少都有一些用,但没有一篇完整的能解决我安装过程碰到的问题,所以决定还是自己写一篇我安装过程的教程,有些参考的文章会给出原地址,比较大众的教程就没有给出了. 本文写于2018年7月27日,注意下时效性,有问题欢迎留言 1. 安装Ubuntu16.04 系统下载地址: http://releases.ubuntu.com/16.04/ 下载64位系统:ubuntu-16.04.4-desktop-a…
前言:最近研究深度学习,安装了好多环境,记录一下,方便后续查阅. 1. Anaconda软件安装 1.1 Anaconda Anaconda是一个用于科学计算的Python发行版,支持Linux.Mac.Windows,包含了众多流行的科学计算.数据分析的Python包.请自行到官网下载安装,下载速度太慢的话可移步清华源. 官网:https://repo.anaconda.com/archive/ 清华源:https://mirrors.tuna.tsinghua.edu.cn/anaconda…
写在前面 本文叙述了在Ubuntu16.04 Server下安装CUDA8.0,cuDNN6.0以及源码编译安装TensorFlow1.4.0(GPU版)的亲身经历,包括遇到的问题及解决办法,也有一些自己的经验,希望能对读者有所帮助.期间参考了许多前人的文章,后文会一一附上链接,在此先行谢过.在下能力有限,经验不足,请大家多多指教. 关键词:Ubuntu16.04 Server   深度学习环境搭建   安装   显卡驱动   CUDA8.0   cuDNN6.0   Bazel   源码编译 …
目录 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0 Reference 硬件说明: 软件准备: 1. 安装Ubuntu16.04 2. 安装显卡驱动 3.安装Cuda8.0 4. 安装Cudnn6.0 5. 清华源安装Anaconda 6. 安装tensorflow 7. 验证您的安装 运行一个简短的 TensorFlow 程序 8. 卸载cudnn5.1升级为cudnn6.0 深度学习环境搭建:Tensorflo…
阿里云ECS服务器环境搭建——ubuntu16.04图形界面的安装 最近琢磨着想在服务器上搭建一个hexo博客,于是就在阿里云上买了一个云服务器ECS,远程接入后默认给的是一个命令窗口,没有图形界面,就想着先安装一个ubuntu的图形界面.本人是第一次接触ubuntn系统,在网上查了各种安装教程才完成了ubuntn的图形界面安装.现总结如下:(如有错误请指正) 一.ubuntn图形界面安装前的准备 1.阿里云云服务器ECS 操作系统:Linux 64 位 ubuntu16.04 64位 2.pu…
作为一个AI工程师,对Linux的一些技能的掌握也能从一定层面反应工程师的资深水平. 要求1:基于SSH的远程访问(本篇文章) 能用一台笔记本电脑,远程登陆一台linux服务器 能随时使用笔记本电脑启动训练任务 能熟练的让代码和文件在笔记本电脑与LINUX服务器之间的传输 要求2:Linux系统的文件系统(Linux指令学习) 知道什么是硬盘的挂载 能合理的使用服务器的硬盘空间 不要求,但建议学会如何在LINUX系统上自建逻辑卷(LVM) 要求3:LINUX系统的账户管理 知道root账户与普通…
目前电脑配置:Ubuntu 16.04 + GTX1080显卡 配置深度学习环境,利用清华源安装一个miniconda环境是非常好的选择.尤其是今天发现conda install -c menpo opencv3 一句命令就可以顺畅的安装上opencv,之前自己装的时候也遇到了很多错误.conda 安装 Tensorflow 和 Pytorch两种框架也是非常方便的,对于不擅长源码编译的我是最佳选择没错了. 所以大致流程就是:安装显卡驱动——安装CUDA 8.0——安装cuDNN——安装mini…
这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).windows上该环境的搭建 :) 前面三篇博客代码实现均基于该环境(开发或者测试过): [AI开发]Python+Tensorflow打造自己的计算机视觉API服务 [AI开发]基于深度学习的视频多目标跟踪实现 [AI开发]视频多目标跟踪高级版 运行环境 1) centOS 7.5 ,不要安装GUI桌面:…
目录 准备工作 设置conda国内镜像源 conda 深度学习环境 tensorflow.mxnet.pytorch安装 tensorflow mxnet pytorch Caffe安装 配置文件修改 编译时常见错误 运行时错误 参考 GPU为RTX2080,系统为更新到最新版本的Win10. 准备工作 安装VS2015,到官网地址older-download下载安装 安装Matlab,笔者安装的是Matlab2017b 安装Anaconda3-4.4.0-Windows-x86_64.exe(…
工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs.com/orzs/p/10951473.html 需要部署的软件 conda环境 nccl2环境 openmpi环境 horovod环境 1. 创建conda环境 官网下载地址:https://www.anaconda.com/distribution/#download-section 下载合适…
OS System:Ubuntu16.04 GPU Device:GTX1080Ti Softwares:CUDA8.0.Cudnn6.0.TensorFlow(1.4.0).Caffe2(1.0.0) 一.win10下安装Ubuntu16.04(双系统) 1.Linux分区方案 (Lagency+MBR) /boot 512M swap 16GB(本机物理内存为32GB) / 30GB or 35GB /home 余下的(越多越好) (UEFI+GPT) efi 512M swap 16GB(…
一.硬件环境 ubuntu 16.04LTS + windows10 双系统 NVIDIA TiTan XP 显卡(12G) 二.软件环境 搜狗输入法 下载地址 显卡驱动:LINUX X64 (AMD64/EM64T) DISPLAY DRIVER (418.56)  下载地址 CUDA:Cuda9.0  下载地址 CUDNN:cuDNN v7.5.0 (Feb 21, 2019), for CUDA 9.0 (cuDNN Library for Linux)  下载地址 Anaconda:An…
关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K 及其以上高级型号 内存:品牌内存,总容量32G以上,根据主板组成4通道或8通道 SSD: 品牌固态硬盘,容量256G以上 显卡:NVIDIA GTX TITAN(XP) NVIDIA GTX 1080ti.NVIDIA GTX TITAN.NVIDIA GTX 1080.NVIDIA GTX 107…
区别于其他入门教程的"手把手式",本文更强调"因"而非"果".我之所以加上"通用"字样,是因为在你了解了这个开发环境之后,那些很low的错误你就不会犯了. 大家都知道深度学习涉及到大量的模型.算法,看着那些乱糟糟的公式符号,心中一定是"WTF".我想说的是,这些你都不要管,所谓车到山前必有路. 所需安装包 通常以我的习惯是以最简单的方式来接触一门新的技术,并且尽量抛弃新的(边缘)技术的介入,如果因为一些其他…
去年底入手一台联想Y7000P,配置了Nvidia GeForce GTX 1660 Ti GPU,GPU内存6G,但是因为有GPU服务器,所以一直没有在这台笔记本上跑过模型,如今经过一番折腾,终于在此笔记本上搭建好了环境,并成功使用GPU训练了一些模型,本篇记录了环境搭建的过程. 检查你的GPU 首先确保你的电脑有Nvidia的GPU,并且支持CUDA,可以参考这个网址. 安装vs2017 Visual Studio 2017 Community下载地址 安装选项:勾选"C++的桌面开发&qu…
依赖 pip3 install pillow 安装numpy相关sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose pipinstall numpysudo apt-get install libblas-dev liblapack-dev libatlas-base-dev gfortran…
英伟达驱动安装 英伟达驱动下载:https://www.nvidia.cn/Download/driverResults.aspx/135493/cn/ 由于是驱动的冲突,那么自然是要杀掉和显卡结合不是那么紧密的草根板驱动nouveau了,加入黑名单是我们要做的第一件事,这样启动以后就不会默认使用草根驱动: cd /etc/modprobe.d/ # 文件夹下创建 touch blacklist-nouveau.conf vim blacklist-nouveau.conf blacklist-…
通过kubeadm安装kubernetes的教程:1: 首先在每台机器上安装: docker(1.12), kubeadm(1.6), kubectl, kubelet, kubernetes-cniapt-get update && apt-get install -y apt-transport-httpscurl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - cat <<E…
感慨: 程序跑不起来,都是环境问题. 1. 安装Anaconda https://blog.csdn.net/gdkyxy2013/article/details/79463859 2. 在 Anaconda 下配置环境 https://www.jianshu.com/p/d2e15200ee9b 创建环境(制定PythoN版本) conda create -n bai python=2.7 激活环境 source activate bai 安装制定版本的keras conda install…
  深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 发表于2016年07月15号由52nlp 接上文<深度学习主机攒机小记>,这台GTX1080主机准备好之后,就是配置深度学习环境了,这里选择了比较熟悉Ubuntu系统,不过是最新的16.04版本,另外在Nvidia GTX1080的基础上安装相关GPU驱动,外加CUDA8.0,因为都比较新,所以踩了很多坑. 1. 安装Ubuntu16.04 不考虑双系统,直接安装 Ubuntu16.04,从ub…
深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直在自己的电脑上安装虚拟机跑,速度实在太慢,主机本身性能太弱,独显都没有,物理安装Ubuntu也没多大意义,所以考虑用公司性能最强悍的游戏主机(i7 6700+GTX 1070) 做实验,这台主机平时是用来跑HTC VIVE的,现在归我用了o(*≧▽≦)ツ. 原本以为整个一套安装下来会很顺利,一路火花…
不多说,直接上干货! 深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0…
接上文<深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0>,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡. 1 下载和安装cuDNN cuDNN全称 CUDA Deep Neural Network library,是NVIDIA专门针对深度神经网络设计的一套GPU计算加速库,被广泛用于各种深度学习框架,例如Caffe, TensorFlow, Theano, Torch, CNTK等. The NVIDIA…
本文转载自:https://my.oschina.net/u/3837179/blog/1920756 在ubuntu中配置GPU的深度学习环境相较于win问题要多很多,这几天琢磨了一下Ubuntu下的环境配置,参考很多人的博客,也遇到了不少坑,好不容易配置成功了,希望写下来,和大家分享,避免大家走弯路.环境的配置主要是nvidia显卡驱动的安装,在驱动安装的过程中遇到了问题,可以参考博客后面的问题解决方案,主要步骤就是装nvidia驱动,然后是安装cuda和cudnn,这两个一般问题不大.配置…
目录 一.Ubuntu16.04 LTS系统的安装 二.设置软件源的国内镜像 1. 设置方法 2.关于ubuntu镜像的小知识 三.Nvidia显卡驱动的安装 1. 首先查看显卡型号和推荐的显卡驱动 2. 安装nvidia-384版本驱动 3. 重启系统,可以查看安装是否成功 四.CUDA9.0的安装 1. CUDA版本选择 2. 安装CUDA9.0 3. 设置环境变量 五.cuDNN7.3的安装 六.Tensorflow-1.12的安装 1. Python开发环境配置. 2. 创建Python…
主要参照以下两篇博文:http://blog.csdn.net/g0m3e/article/details/51420565   http://blog.csdn.net/xuzhongxiong/article/details/52717285 我先做个说明,我曾经在两种环境下搭建过,下面说一下软硬件配置. 1)y480笔记本,GPU为GT650,软件环境为ubuntu16.04+cuda7.5+cudnn v4,后来因为编译caffe的时候报了一个包含“computer_64”的错,就把cu…
在动手安装之前,首先要确定硬件,系统,准备安装软件的版本,确定这些软硬件之间是否相互支持或兼容.本文安装的主要环境和软件如下: Ubuntu16.10+CUDA8.0(cudnn5.1,CNMEM)+Theano0.8.2+Tensorflow0.11.0rc1+Keras1.1.0 显卡型号为Quadro K6000. 深度学习的另外一个比较常用的开发环境是CAFFE,由于之前的很多大牛基于CAFFE做了很多注明的模型,且已经发布到网上,故这套框架更适合于应用.但CAFFE安装起来异常复杂,需…
本教程搭建集 Tensorflow.Keras.Coffe.PyTorch 等深度学习框架于一身的环境,及jupyter. 本教程使用nvidia-docker启动实例,通过本教程可以从一个全新的Ubuntu系统快速搭建出GPU深度学习环境. 一.安装依赖环境 1. 使用国内镜像加速安装 https://mirrors.tuna.tsinghua.edu.cn/help/ubuntu/此处默认环境:ubuntu16.04LTS sudo mv /etc/apt/sources.list /etc…