题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以可以用矩阵加速 #include <bits/stdc++.h> using namespace std; int n, m, mod; ]; ]; struct node { ][]; }a, re; node mul(node x, node y) { node res; memset(res…
这个题你发现打暴力的话可以记忆化搜素加剪枝,那么意味着可以递推,我们搜的话就是1010^9我们就往下匹配遇到匹配成功就return,那么我们可以想一下什么决定了状态,我们考虑kmp的过程,对于我们目前匹配到的距离,下一次在匹配时不会用他之后的字符,那么只要我们知道匹配到的距离和已匹配长度就行了,那么我们考虑状态的转移,我们由于要像kmp那样匹配于是我们只要知道在匹配到k位时往下走一个数时匹配到哪,算出a[k][j](在k时到j的方案数),那么新的f[i][j]=∑f[i-1][k]*a[k][j…
题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s的前j个字符一致的情况下)的方法数 若匹配到s串长度为i的后缀加一个字符num可以组成最长长度为j的后缀,设a[i][j]为num的方法数 例如,s为12312,a为 9 1 0 0 0 08 1 1 0 0 08 1 0 1 0 09 0 0 0 1 08 1 0 0 0 1 (i,j都是从0到m-1) 如…
Problem 1009. -- [HNOI2008]GT考试 1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3773  Solved: 2314[Submit][Status][Discuss] Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0<=Ai<=9)…
去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2…Am(0<=Ai<=9)有M位,不出现是指X1X2…Xn中没有恰好一段等于A1A2…Am. A1和X1可以为0 Input 第一行输入N,M,K.接下来一行输入M位的数. 100%数据N<=10^9,M<=20,K<=1000 4…
传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二进制中1的个数是3的倍数.问长度为k的满足条件的序列有多少种? 题解:dp状态定义为,在前i个数中以aj为结尾的方案数量 则转移为 因为是求和的转移,可以用矩阵快速幂将O(n)的求和加速为log级别 接下来的问题就是然后填系数了,因为要累加,所以只要时,我们将矩阵的第i行第j列的系数填为1即可 目的…
题意:一个只含字母C和P的环形串 求长度为n且每m个连续字符不含有超过k个C的方案数 m <= 5  n <= 1e15 题解:用一个m位二进制表示状态 转移很好想 但是这个题是用矩阵快速幂加速dp的 因为每一位的转移都是一样的 用一个矩阵表示状态i能否转移到状态j 然后跑一遍 统计答案特别讲究 因为是一个环 从1 ~ n+m 那么 m+1 ~ n + m之间就是我们所求的 1 ~ m和n+1 ~ n + m是同样的一段 就相当于把m位二进制状态 转移n次 然后再转移到自己的就是答案 初试模板…
题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$d_i$由小到大排序 设$f_i$表示加上$1\sim i-1$的所有边走$d_i$次后各点间的联通情况 $G$表示只连$1\sim i-1$的边的邻接矩阵 这些我们可以用一个$01$邻接矩阵来存储 则有 $f_i=f_{i-1}*G^{d_i-d_{i-1}}$ 这很明显是一个矩阵快速幂的过程 之…
题目大意: f(i) 是一个斐波那契数列 , 求sum(f(i)^k)的总和 由于n极大,所以考虑矩阵快速幂加速 我们要求解最后的sum[n] 首先我们需要思考 sum[n] = sum[n-1] + f(i+1)^k 那么很显然sum[n-1]是矩阵中的一个元素块 那么f(i+1)^k怎么利用f(i) , f(i-1)来求 f(i+1)^k = (f(i) + f(i-1)) ^ k 假如k = 1 , 可以看出f(i+1) = f(i-1) + f(i) (1,1) k = 2 , 可以看出…
A B C D 给你一个联通图 给定S,T 要求你加一条边使得ST的最短距离不会减少 问你有多少种方法 因为N<=1000 所以N^2枚举边数 迪杰斯特拉两次 求出Sdis 和 Tdis 如果dis[i]+dis[j]+1>=distance(s,t)&&dis[j]+dis[i]+1>=distance(i,j)就为一条要求边 #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) me…
1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4542  Solved: 2815[Submit][Status][Discuss] Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2..…
题意:二维平面上右一点集$S$,共$n$个元素,开始位于平面上任意点$P$,$P$不一定属于$S$,每次操作为选一条至少包含$S$中两个元素和当前位置$P$的直线,每条直线选取概率相同,同一直线上每个点$Q \in S$ 选取概率相同,$Q$次询问 包含两个元素$t,m$ 即点$P$到$t$共操作$m$次的最大概率 打了场$CF$ 结果$D$题死活调不出来 只能一大早来补题了 可以想到记录$f[i][j][k]$表示从点$i$到点$j$走$k$步的概率 这个过程我们可以通过记录$2^x$的矩阵来…
https://www.lydsy.com/JudgeOnline/problem.php?id=2004 以前只会状压dp和矩阵快速幂dp,没想到一道题还能组合起来一起用,算法竞赛真是奥妙重重 小Z所在的城市有N个公交车站,排列在一条长(N-)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距 离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计线路: .设共K辆公交车,则1到K号站作为始发站,N-K+1到N号台作为终点站. .每个车站必须被一辆且仅一辆公交…
[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2-Am有M位,不出现是指X1X2-Xn中没有恰好一段等于A1A2-Am. A1和X1可以为0 \(0 \leq X_i \leq 9,0\leq Ai\leq 9,m \leq 20,n \leq 10^9\) 分析 先考虑暴力的思路,设\(dp[i][j]\)表示前i位数与不吉利数字匹配了前…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首先要设计一个不太好想的状态:f[i][j]表示大串上到第 i 位时有小串前 j 位的后缀,且不包含整个小串的方案数: 也就是如果小串是 12312 , f[5][3] 表示目前大串的情况是 **123... : 这个状态要从 i 转移到 i+1 ,还需要一个帮助它的数组 a,a[i][j]表示在长度…
传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的. 考虑到每次都是一样的就可以用矩阵快速幂优化一波. 代码: #include<bits/stdc++.h> using namespace std; int n,m,mod,fail[21]; bool vis[21][10]; char s[21]; struct Matrix{ int va…
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j)表示dp(x-1, j)对dp(x, i)的贡献.然后用矩阵快速幂就可以了. 时间复杂度O(M3logN + M) ------------------------------------------------------------------- #include<bits/stdc++.h>…
Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0 Input 第一行输入N,M,K.接下来一行输入M位的数. 100%数据N<=10^9,M<=20,K<=1000 40%数据N<=1000 10%数据N<=6…
题目链接:https://www.luogu.org/problemnew/show/P3193#sub 题目描述 阿申准备报名参加 GT 考试,准考证号为 N 位数 X1,X2…Xn(0 <= Xi <= 9) ,他不希望准考证号上出现不吉利的数字. 他的不吉利数学 A1​,A2​…Am​(0≤Ai​≤9) 有 M 位,不出现是指 X1​,X2​…Xn​ 中没有恰好一段等于 A1​,A2​…Am​ ,A1​ 输入输出格式 输入格式: 第一行输入N,M,K.接下来一行输入M位的数. 输出格式:…
这道到是不用看题解,不过太经典了,早就被剧透一脸了 这道题很像ac自动机上的dp(其实就是) 然后注意到n很大,节点很小,于是就可以用矩阵快速幂优化了 时间复杂度为o(m^3 *log n); 蒟蒻kpm写得少,改了好久= = CODE: #include<cstdio>#include<iostream>#include<cstring>#include<algorithm>using namespace std;int n,m,mod;#define m…
https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0 在构造好的next图上跑矩阵快速幂即可 /**********************************…
题面 传送门 思路 首先,如果$n$和$m$没有那么大的话,有一个非常显然的dp做法: 设$dp[i][j]$表示长度为i的字符串,最后j个可以匹配模板串前j位的情况数 那么显然,答案就是$\sum_{i=0}^{m-1}dp[n][i]$了 转移过程则需要用一个辅助数组:令$g[i][j]$表示模板串的前缀$i$可以转移到前缀$j$的方法数(注意它可能可以转移到很多个串) 辅助数组的生成可以用next数组来推(模板串太短,其实暴力也是可以的) 那么$dp[i+1][k]=dp[i][j]*g[…
[BZOJ1009]GT考试(KMP算法,矩阵快速幂,动态规划) 题面 BZOJ 题解 看到这个题目 化简一下题意 长度为\(n\)的,由\(0-9\)组成的字符串中 不含串\(s\)的串的数量有几个 很显然,如果组成的字符串和\(s\)串做\(KMP\)的匹配的话 是不能匹配到最后一位的 所以,我们想到一个很显然的方程 \(f[i][j]\)表示当前做了第\(i\)位,在\(s\)串中匹配到了第\(j\)位 每次枚举下一位放的数字 以及每一位的位置 相当于做\(KMP\)的匹配 然后进行转移…
1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Status][Discuss] Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2..…
题面描述 阿申准备报名参加\(GT\)考试,准考证号为\(N\)位数\(x_1,x_2,...,x_n\ (0\leq x_i\leq 9)\),他不希望准考证号上出现不吉利的数字. 他的不吉利数字\(a_1,a_2,...,a_m\ (0\leq a_i\leq 9)\)有\(M\)位,不出现是指\(x_1,x_2,...,x_n\)中没有恰好一段等于\(a_1,a_2,...,a_m\). \(a_1\)和\(x_1\)可以为\(0\) 输入格式 第一行输入\(N,M,K\).接下来一行输入…
Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为 0 Input 第一行输入N,M,K.接下来一行输入M位的数. N<=10^9,M<=20,K<=1000 Output 阿申想知道不出现不吉利数字的号码有多少种,输出模K取余…
由于方块最多涉及3行,于是考虑将每两行状压起来,dfs搜索每种状态之间的转移. 这样一共有2^12种状态,显然进行矩阵快速幂优化时会超时,便考虑减少状态. 进行两遍bfs,分别为初始状态可以到达的状态,和可以到达终止状态的状态. 同时出现在两次bfs中的状态即为有效状态,一共有141种. 这样就可以跑出来了. 未加矩阵快速幂 50分 ..,..] of longint= ((-,,),(-,,),(,,),(,,),(-,,),(-,,),(,,),(-,,)); dy:..,..] of lo…
搞懂了什么是矩阵快速幂优化.... 这道题的重点不是DP. /* 题意: 小明要走某条路,按照个人兴致,向前走一步的概率是p,向前跳两步的概率是1-p,但是地上有地雷,给了地雷的x坐标,(一维),求小明安全到达最后的概率. 思路: 把路分成好多段,小明安全走完每一段的概率乘起来就是答案. dp[i]=p*dp[i-1]+(1-p)*dp[i-2]; 参考fib数列构造矩阵进行快速幂. 注意初始化的时候,起点概率看作1,起点减一也就是有地雷的地方概率看作0.//屌丝一开始在这里没搞明白. */ #…
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant string: among all the substrings of an elegant string, none of them is a permutation of "0, 1,…, k". Let function(n, k) be the number of elegant s…
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高位数字不为0. 因此,符合我们定义的最小的有趣的数是2013.除此以外,4位的有趣的数还有两个:2031和2301. 请计算恰好有n位的有趣的数的个数.由于答案可能非常大,只需要输出答案除以1000000007的余数. 输入格式 输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000). 输…