不要管上面的标题的bug 那是幂的意思,不是力量... POJ 3233 Matrix Power Series 描述 Given a n × n matrix A and a positive integer k, find the sum $ S = A + A^2 + A^3 + - + A^k $. 给你个n×n大小的矩阵A和一个正整数k,求矩阵S = A + A^2 + A^3 + - + A^k. 输入 The input contains exactly one test case…
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Status][Discuss] Description Input Output Sample Input Sample Output HINT Source 题解: 矩乘快速幂,构造矩阵: 其中k为位数,所以分段进行快速幂: 1~9:10~99:100~999:-. 开始4A6W,然后加了快速乘AC了,但…
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. Input 输入包含一行6个整数.依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内. Output 输出包含一行一个整数,即an除以m的余数. Sample Input…
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加速(数列) P3390 [模板]矩阵快速幂 P1306 斐波那契公约数 P1962 斐波那契数列 P4838 P哥破解密码 由题意可得:相邻两个珠子中必有金属性珠子.这其实就可以理解为不能有连续的两个木属性珠子.这样一看,此题就和P4838 P哥破解密码差不多了.只不过这题是个2*2矩阵乘法 进入正…
[bzoj4887]:[Tjoi2017]可乐 题目大意:一张无相连通图(n<=30),从1号点开始走,每秒可以走到相邻的点也可以自爆,求第t秒(t<=1e6)后所有的方案数是多少对2017取模 恩..就是一个矩阵快速幂..矩阵就是原图的邻接矩阵..然后f[i][i]也是1.. 但是这是不会自爆的情况下的矩阵,算上自爆的话要把每次转移的结果求和..蒟蒻想了半天.. 然后发现其实只要再加一行一列,然后f[n+1][i]=1,就可以了.. 意会一下好了..矩阵什么的感觉讲不清楚啊.. /* htt…
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些细节,比如快速幂时ans矩阵的初始化方式,快速幂的次数,矩阵乘法过程中对临时矩阵的清零,最后输出结果时的初始矩阵...矩阵快速幂好理解但是细节还是有点小坑的.. 下面就是满满的槽点,,高能慎入!!! 对于这个题目要求矩阵过程中对m取模,结果对g取模,我表示难以接受,,上来没看清题直接wa19个点,另…
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波那契了.... */ #include<iostream> #include<cstdio> #define MAXN 3 #define LL long long #define mod 1000000007 using namespace std; LL n; LL a[MAXN]…
题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k,然后结果的每个元素A[i][j] % m.(n <= 30,k < 10^9,m < 10^4) 要用到矩阵快速幂,但我认为最重要的其实还是相加的那个过程,因为k的范围是10^9,一个一个加肯定是不行的,我想了一个办法就是我以k = 8为例说明: ans = A + A^2 + A^3 +…
地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方  结果模m的相加和是多少 Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Sample Input 2 2 4 0 1 1 1 Sample Output 1 2 2 3 题解 矩阵逐步的相乘然后相加是不可以 但是矩阵也有类似快速幂的做法 /*A + A^2 =A(I+A)…
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞就能搞出来了 (我是看的题解才A的,,, 中间乱搞的时候犯了一些脑残的错误) // by SiriusRen #include <cstdio> #include <cstring> using namespace std; int n,mod,k; struct matrix{int…