luogu3629 [APIO2010]巡逻】的更多相关文章

创造一个环出来,可以让环上的边都只访问一次. 对于 \(k=1\),答案就是树的直径两边连起来. 倘若 \(k=2\),那就先按照 \(k=1\) 的求一遍,然后我们发现,如果第二条加的边构成的环和第一条加的边构成的环有交,那么交必定会被访问两次.这样交不但没有减少访问次数,还抵消了第一次的成果.因此把第一次求出来的直径上的边权值由 \(1\) 变成 \(-1\) 再求一遍. #include <iostream> #include <cstdio> using namespace…
P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道路的长度均为 1 个单位. 为保证该地区的安全,巡警车每天要到所有的道路上巡逻.警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局. 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些…
洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道路的长度均为 1 个单位. 为保证该地区的安全,巡警车每天要到所有的道路上巡逻.警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局. 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这…
[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道路的长度均为 1 个单位. 为保证该地区的安全,巡警车每天要到所有的道路上巡逻.警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局. 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些圆的线段.为…
Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离. Range 10%的数据中,n ≤ 1000, K = 1: 30%的数据中,K = 1: 80%的数据中,每个村庄相邻的村庄数不超过 25: 90%的数据中,每个村庄相邻的村庄数不超过 150: 100%的数据中,3 ≤ n ≤…
题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道路的长度均为 1 个单位. 为保证该地区的安全,巡警车每天要到所有的道路上巡逻.警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局. 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些圆的线段.为了遍历所有的道路,巡警车需…
Description 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道路的长度均为 1 个单位. 为保证该地区的安全,巡警车每天要到所有的道路上巡逻.警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局. 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些圆的线段.为了遍历所有的…
题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度优先遍历思想,很容易证明这个结论,因为每条边必然被递归一次,回溯一次. 建立1条新道路之后,因为新道路必须恰好经过一次(0次,2次都不可以),所以在沿着新道路(x,y)巡逻之后,要返回x,就必须沿着树上从y到x的路径巡逻一遍,最终形成一个环.与不建立新道路的情况相结合,相当于树上x与y之间的路径就只…
link 题意 有 \(n\) 个村庄,编号为 \(1, 2, ..., n\) .有 \(n – 1\) 条道路连接着这些村 庄,从任何一个村庄都可以到达其他任一个村庄.道路长度均为 1. 巡警车每天要到所有的道路上巡逻.警察局设在编号为 \(1\) 的村庄里,每天巡警车总是从警察局出发又回到警察局. 在这些村庄之间建 \(K\) 条新的道路, 可以连接任意两个村庄.每天巡警车必须 经过新建的道路正好一次. 求最小的巡逻距离. 思路 非常有意思的一道题.顺便复习了直径的两种写法. 考虑逐条加边…
一道树的直径 BZOJ原题链接 洛谷原题链接 显然在原图上路线的总长为\(2(n-1)\). 添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍.所以为了使添加的边的贡献最大化,我们找出树的直径,将其两端点连上边即可. 设直径长\(L\),于是路线总长就变为\(2(n-1)-L+1=2n-L-1\). 当\(K=1\)时,这就是答案. 当\(K=2\)时,我们考虑在上述添边后图中再添一条边. 添加这条边同样会形成一个环,如果这个环与之前的环没有边重合的话,那么贡献和上一边一样,…
\(APIO\)的题就是非常难啊 首先看到\(k=1\)的情况,显然我们只需要找到一条直径把这条直径的两端连起来就好了 因为我们连这一条新边的实质是使得这一条链上的边不需要重复经过了,我们想让走的边尽量少,自然需要重复经过的尽量少,所以\(k=1\)找到直径就好了 答案就是\(2\times(n-1)-R+1\),\(R\)是直径的长度,\(+1\)是因为多了一条边要走 之后是\(k=2\)的情况 有了上面的经验可能第一感受就是在找一条尽量长的路径,使得这条路径上的边只需要经过一次就好了 但是有…
题目链接 容易发现,当加一条边时,树上会形成一个环,这个环上的每个点都是只要走一次的,也就是说我们的答案减少了这个环上点的个数,要使答案最小,即要使环上的点最多,求出直径\(L\),则答案为\(2(n-1)-L+1\). 当加两条边时,同样会形成一个新环,但这个新环可能和第一个环有交点,而这些交点仍是要走两次的,所以我们要让交点的个数尽可能小,所以,把原直径上的所有边权取反,代表若取了这条边,答案会增大那么多,然后再求一次树的直径\(L_1\),则答案为\(2(n-1)-L+1-L_1+1=2n…
先考虑$k = 1$的情况,很明显每一条边都要被走两遍,而连成一个环之后,环上的每一条边都只要走一遍即可,所以我们使这个环的长度尽可能大,那么一棵树中最长的路径就是树的直径. 设直径的长度为$L$,答案就是$2(n - 1) - L + 1 = 2n - L - 1$. 考虑$k = 2$的情况,发现第一条边一定还是要把直径练成一个环,而第二条边是要再求一个类似于直径的东西,具体来说,可以把原来直径(记为$L_{1}$)上的每一条边的边权取为$-1$,然后再求一遍直径(记为$L_{2}$),这样…
本来抄了篇题解,后来觉得题解都太不友好(我太菜了),一气之下自己打...一打打到第二天QAQ 首先什么边也不加时,总路程就是2*(n-1) 考虑k=1的时候,答案显然是2*(n-1)-直径+1=2*n-直径-1,如果能加一条边的话,因为希望减少的尽可能多,那么只需要把直径的首尾接起来,就不需要来回走,加一就是加了这一条新加入的边. 而k=2的时候,首先还是往最长链上面思考.然而做k=1的时候已经用掉了一段,我们需要k=2的和k=1的不重叠. 于是乎,我们跑完直径后之后把直径上的边权全部修改为-1…
题目传送门 我们先来介绍一个概念:树的直径. 树的直径:树中最远的两个节点间的距离.(树的最长链)树的直径有两种方法,都是$O(N)$. 第一种:两遍bfs/dfs(这里写的是两遍bfs) 从任意一个节点出发,遍历一遍树找到与出发点距离最远的点p. 再从节点p出发,遍历一遍求出与p距离最远的点q.则pq即为直径(其中一个) 但是不能处理负权边. int bfs(int x) { queue<int>q; memset(d,0x3f,sizeof(d)); memset(pre,,sizeof(…
如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就难在\(k=2\)的时候,还是上面的思路,首先肯定连接两个叶子结点最优.假设我们连接的是\(x,y\)两个叶子结点,它们到直径的距离分别为\(dis[x],dis[y]\),并设直径上两点的距离为\(d[u,v]\),这里\(u,v\)分别为叶子结点所在链和直径的交点. 因此最后的答案会增加\(d[…
题目链接: https://www.luogu.org/problemnew/show/P3629 分析 最近被众多dalao暴虐,这道题傻逼地调了两天才知道错哪 不过这题比较良心给你一个容易发现性质的图 不修路时 每条路走两次可知需要走\(2(N-1)\)步 \(K=1\) 送分给你,直接\(O(N)\)求直径,若直径长为\(L\),由于新加路还要走一步,少走了\(L-1\)步 \(K=2\) 如果还是用求直径的方法来求发现不太对,与原来直径重叠那部分又要多走一遍 ,于是不妨把原来直径边权取反…
(这道题考察了求直径的两种方法......) 在原图中,每条边要经过两次,增加1条后,形成了一个环,那么环上的边只需要经过一次了(大量画图分析得),再增加一条又会形成一个环,如果这两个环有重叠,重叠部分还是要经过两次,就浪费了,所以我们先找直径(两次dfs),在直径的两个端点连一条边,就可以得到k=1的答案了,如果k=2,将环上的边权都设为-1,再在新图上用DP求新的直径(因为边权有负,要用DP),最后也就得到k=2时的答案了. 1 #include<bits/stdc++.h> 2 usin…
P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道路的长度均为 1 个单位. 为保证该地区的安全,巡警车每天要到所有的道路上巡逻.警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局. 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些…
前言 复习笔记第6篇. 求直径的两种方法 树形DP: dfs(y); ans=max( ans,d[x]+d[y]+w[i] ); d[x]=max( d[x],d[y]+w[i] ); int dis=dfs( v,u )+1; if ( f[u]<dis ) g[u]=f[u],f[u]=dis; else if ( g[u]<dis ) g[u]=dis; ans=max( ans,f[u]+g[u]+1 ); return f[u]; 两次 bfs/dfs: 从任意点出发,找到最远点l…
当一个人看见星空,就再无法忍受黑暗 为了点亮渐渐沉寂的星空 不想就这样退役 一定不会鸽の坑 . 一本通提高篇 . 算竞进阶 . CDQ & 整体二分 . 平衡树 . LCT . 字符串 . 随机化算法 . 图论 . 双向BFS . 组合数学 . 同余 UNFINISHED LIST 提高 道路和航线 汽车加油行驶问题 皇宫看守 旅游规划 凸多边形的划分 跳跳棋 叶子的颜色 骑士 旅行问题 股票交易 算竞 Picnic Planning 天天爱跑步 疫情控制 岛屿 Freda的传呼机 PKU AC…
树形DP 说是树形DP,其实就是求树的最长链嘛…… K=1的时候明显是将树的最长链的两端连起来最优. 但是K=2的时候怎么搞? 考虑第一次找完树的最长链以后的影响:第一次找过的边如果第二次再走,对答案的贡献会变成-1,因为两次都选这一段的话,反而会使得这一段不得不走两次(如果只被选一次的话就可以只走一次),所以就将第一次找出的树的最长链上的边权值都改为-1.这个操作可以用链表实现(类比一下最小费用最大流的spfa实现!) 题解:http://blog.csdn.net/qpswwww/artic…
[BZOJ1912][Apio2010]patrol 巡逻 Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离. Sample Input 8 1 1 2 3 1 3 4 5 3 7 5 8 5 5 6 Sample Output 11 HINT 10%的数据中,n ≤ 1000,…
1912: [Apio2010]patrol 巡逻 Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离. Sample Input 8 1 1 2 3 1 3 4 5 3 7 5 8 5 5 6 Sample Output 11 HINT 10%的数据中,n ≤ 1000, K = 1: 30%的数据中,K…
1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 2541  Solved: 1288[Submit][Status][Discuss] Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离.…
来源 LCA 个人评价:lca求路径,让我发现了自己不会算树的直径(但是本人似乎没有用lca求) 1 题面 「APIO2010」巡逻 大意:有一个有n个节点的树,每条边权为1,一每天要从1号点开始,遍历所有的边,再回到1号点,每条道路都经过两次,为了减少需要走的距离,可以增加K\((1\leq K\leq 2)\)条新的边(可以自环),且每天必须经过这K条边正好一次,请计算最佳方案是总路程最小,并输出最小值 2 分析题面 因为K很小,所以我们可以试着手推一下每种情况 2.1 不加边 从1号点出发…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小…
Description: 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道路的长度均为 1 个单位. 为保证该地区的安全,巡警车每天要到所有的道路上巡逻.警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局. 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些圆的线段.为了遍历所有…
富有思维性的树形dp Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离. Sample Input 8 1 1 2 3 1 3 4 5 3 7 5 8 5 5 6 Sample Output 11 HINT 10%的数据中,n ≤ 1000, K = 1: 30%的数据中,K =…
原题链接 题目描述 在一个地区有 n 个村庄,编号为1,2,-,n. 有 n-1 条道路连接着这些村庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其他任一个村庄. 每条道路的长度均为1个单位. 为保证该地区的安全,巡警车每天都要到所有的道路上巡逻. 警察局设在编号为1的村庄里,每天巡警车总是从警局出发,最终又回到警局. 为了减少总的巡逻距离,该地区准备在这些村庄之间建立 K 条新的道路,每条新道路可以连接任意两个村庄. 两条新道路可以在同一个村庄会合或结束,甚至新道路可以是…