Apache Spark源码剖析】的更多相关文章

Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著   ISBN 978-7-121-25420-8 2015年3月出版 定价:68.00元 304页 16开 编辑推荐 Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐 1.本书全面.系统地介绍了Spark源码,深入浅出,…
Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐1.本书全面.系统地介绍了Spark源码,深入浅出,细致入微2.提供给读者一系列分析源码的实用技巧,并给出一个合理的阅读顺序3.始终抓住资源分配.消息传递.容错处理等基本问题,抽丝拨茧4.一步步寻找答案,所有问题迎刃而解,使读者知其然更知其所以然 内容简介 书籍计算机书籍 <Apache Spark源码剖析>以Spark…
2. 创建执行环境SparkEnv SparkEnv是Spark的执行环境对象,其中包括众多与Executor执行相关的对象.由于在local模式下Driver会创建Executor,local-cluster部署模式或者Standalone部署模式下Worker另起的CoarseGrainedExecutorBackend进程中也会创建Executor,所以SparkEnv存在于Driver或者CoarseGrainedExecutorBackend进程中.创建SparkEnv主要使用Spar…
3. 创建并初始化Spark UI 任何系统都需要提供监控功能,用浏览器能访问具有样式及布局并提供丰富监控数据的页面无疑是一种简单.高效的方式.SparkUI就是这样的服务. 在大型分布式系统中,采用事件监听机制是最常见的.为什么要使用事件监听机制?假如SparkUI采用Scala的函数调用方式,那么随着整个集群规模的增加,对函数的调用会越来越多,最终会受到Driver所在JVM的线程数量限制而影响监控数据的更新,甚至出现监控数据无法及时显示给用户的情况.由于函数调用多数情况下是同步调用,这就导…
今天给大家带来的分享是 Apache DolphinScheduler 源码剖析之 Worker 容错处理流程 DolphinScheduler源码剖析之Worker容错处理流程 Worker容错流程是这样的: 1. 当 ZooKeeper 监听到有 Worker 节点挂了,就会去通知 Master 进行容错 2. 收到通知的 Master 会通过分布式锁去"抢"到容错的操作,拿到锁的 Master 开始进行容错处理. 3. 容错的流程如下:     3.1 通过已下线的 Worker…
欢迎转载,转载请注明出处,徽沪一郎. 概要 上篇博文讲述了如何通过修改源码来查看调用堆栈,尽管也很实用,但每修改一次都需要编译,花费的时间不少,效率不高,而且属于侵入性的修改,不优雅.本篇讲述如何使用intellij idea来跟踪调试spark源码. 前提 本文假设开发环境是在Linux平台,并且已经安装下列软件,我个人使用的是arch linux. jdk scala sbt intellij-idea-community-edition 安装scala插件 为idea安装scala插件,具…
欢迎转载,转载请注明出处,徽沪一郎. 楔子 在Spark源码走读系列之2中曾经提到Spark能以Standalone的方式来运行cluster,但没有对Application的提交与具体运行流程做详细的分析,本文就这些问题做一个比较详细的分析,并且对在standalone模式下如何实现HA进行讲解. 没有HA的Standalone运行模式 先从比较简单的说起,所谓的没有ha是指master节点没有ha. 组成cluster的两大元素即Master和Worker.slave worker可以有1到…
由于近期准备深入研究一下Spark的核心源码,所以开了这一系列用来记录自己研究spark源码的过程! 想要读源码,那么第一步肯定导入spark源码啦(笔者使用的是IntelliJ IDEA),在网上找了一圈,尝试了好几种方法都没有成功,最终通过自己摸索出了一种非常简单的方式(只需要两步即可!) 环境要求 IntelliJ IDEA(Community版本即可) maven(当然jdk是不可少的) 具体信息如下: C:\Users\Administrator>mvn -version Apache…
欢迎转载,转载请注明出处,徽沪一郎. 楔子 Spark计算速度远胜于Hadoop的原因之一就在于中间结果是缓存在内存而不是直接写入到disk,本文尝试分析Spark中存储子系统的构成,并以数据写入和数据读取为例,讲述清楚存储子系统中各部件的交互关系. 存储子系统概览 上图是Spark存储子系统中几个主要模块的关系示意图,现简要说明如下 CacheManager  RDD在进行计算的时候,通过CacheManager来获取数据,并通过CacheManager来存储计算结果 BlockManager…
欢迎转载,转载请注明出处,徽沪一郎 概要 今天不谈Spark中什么复杂的技术实现,只稍为聊聊如何进行代码跟读.众所周知,Spark使用scala进行开发,由于scala有众多的语法糖,很多时候代码跟着跟着就觉着线索跟丢掉了,另外Spark基于Akka来进行消息交互,那如何知道谁是接收方呢? new Throwable().printStackTrace 代码跟读的时候,经常会借助于日志,针对日志中输出的每一句,我们都很想知道它们的调用者是谁.但有时苦于对spark系统的了解程度不深,或者对sca…